PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 7 entries in the Bibliography.


Showing entries from 1 through 7


2021

Thin silicon solid-state detectors for energetic particle measurements. Development, characterization, and application on NASA s Parker Solar Probe mission

Context. Silicon solid-state detectors are commonly used for measuring the specific ionization, dE∕dx, in instruments designed for identifying energetic nuclei using the dE∕dx versus total energy technique in space and in the laboratory. The energy threshold and species resolution of the technique strongly depend on the thickness and thickness uniformity of these detectors.
Aims: Research has been carried out to develop processes for fabricating detectors that are thinner than 15 μm, that have a thickness uniform ...

Wiedenbeck, M.; Burnham, J.; Cohen, C.; Cook, W.; Crabill, R.; Cummings, A.; Davis, A.; Kecman, B.; Labrador, A.; Leske, R.; Mewaldt, R.; Rankin, J.; Rusert, M.; Stone, E.; Christian, E.; Goodwin, P.; Link, J.; Nahory, B.; Shuman, S.; von Rosenvinge, T.; Tindall, C.; Black, H.; Bullough, M.; Clarke, N.; Glasson, V.; Greenwood, N.; Hawkins, C.; Johnson, T.; Newton, A.; Richardson, K.; Walsh, S.; Wilburn, C.; Birdwell, B.; Everett, d.; McComas, D.; Weidner, S.; Angold, N.; Schwadron, N.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039754

instrumentation: detectors; Sun: particle emission; acceleration of particles; space vehicles: instruments; Parker Data Used

2020

Dependence of the Interplanetary Magnetic Field on Heliocentric Distance at 0.3\textendash1.7~AU: A Six-Spacecraft Study

We use magnetometer data taken simultaneously by MESSENGER, VEX, STEREO and ACE to characterize the variation of the interplanetary magnetic field (IMF) with heliocentric distance, rh, for rh≲ 1 AU. Power law fits (a rh b) to the individual IMF components and magnitude indicate that, on average, the IMF is more tightly wound and its strength decreases less rapidly with rh than the Parker spiral prediction. During Solar Cycle 24, temporal changes in b were insignificant, but changes in amplitude, a, were correlated with ...

Hanneson, Cedar; Johnson, Catherine; Mittelholz, Anna; Asad, Manar; Goldblatt, Colin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2020

YEAR: 2020     DOI: 10.1029/2019JA027139

Heliosphere; IMF; interplanetary magnetic field; Mars; Mercury; parker solar probe; Solar Probe Plus; Venus

2017

Full wing qualification testing and incremental program update for the solar probe plus array

As the Solar Probe Plus (SPP) program moves into the flight hardware build phase, the final testing of the qualification panel has been completed. The rigorous testing is many orders of magnitude more intensive than that used for standard earth-orbit missions. Testing under high irradiance, high temperature conditions over large areas poses design and logistic challenges, which have spurred innovation in steady state illumination. New test hardware of interest include a large area LED simulator capable of 6X AM0 string curre ...

Gerger, Andrew; Stall, Richard; Schurman, Matthew; Sharps, Paul; Sulyma, Christopher; De Zetter, Karen; Johnson, Paul; Mitchell, Richard; Guevara, Roland; Crist, Kevin; Cisneros, Larry; Sarver, Charles;

Published by: 2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017      Published on:

YEAR: 2017     DOI:

Degassing; Heliostats (instruments); Light emitting diodes; Orbits; Probes; Silicones; Solar cell arrays; Wings; Parker Engineering;

2016

Full wing qualification testing and incremental program update for the solar probe plus array

As the Solar Probe Plus (SPP) program moves into the flight hardware build phase, the final testing of the qualification panel has been completed. The rigorous testing is many orders of magnitude more intensive than that used for standard earth-orbit missions. Testing under high irradiance, high temperature conditions over large areas poses design and logistic challenges, which have spurred innovation in steady state illumination. New test hardware of interest include a large area LED simulator capable of 6X AM0 string curre ...

Gerger, Andrew; Stall, Richard; Schurman, Matthew; Sharps, Paul; Sulyma, Christopher; De Zetter, Karen; Johnson, Paul; Mitchell, Richard; Guevara, Roland; Crist, Kevin; Cisneros, Larry; Sarver, Charles;

Published by: Conference Record of the IEEE Photovoltaic Specialists Conference      Published on:

YEAR: 2016     DOI:

Degassing; Heliostats (instruments); Light emitting diodes; Orbits; Probes; Silicones; Solar cell arrays; Wings; Parker Engineering;

2015

Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus

The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic ...

Kasper, Justin; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart; Belcher, John; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony; Chandran, Benjamin; Cheimets, Peter; Cirtain, Jonathan; Cranmer, Steven; Curtis, David; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven; Korreck, Kelly; Larson, Davin; Lazarus, Alan; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James; Marchant, William; Maruca, Bennet; McComas, David; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew; Pogorelov, Nikolai; Reinhart, Matthew; Richardson, John; Robinson, Miles; Rosen, Irene; Skoug, Ruth; Slagle, Amanda; Steinberg, John; Stevens, Michael; Szabo, Adam; Taylor, Ellen; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S.; Zank, Gary;

Published by: Space Science Reviews      Published on: 10/2015

YEAR: 2015     DOI: 10.1007/s11214-015-0206-3

Acceleration; Corona; Heating; Parker Data Used; Solar Probe Plus; Solar wind plasma; SWEAP

Propulsion technology assessment: Science and enabling technologies to explore the interstellar medium

As part of a larger effort led by the Keck Institute for Space Studies at the California Institute of Technology, the Advanced Concepts Office at NASA’s George C. Marshall Space Flight Center conducted a study to assess what low-thrust advanced propulsion system candidates, existing and near term, could deliver a small, Voyager-like satellite to our solar system’s heliopause, approximately 100 AU from the center of the sun, within 10 years and within a 2025 to 2035 launch window. The advanced propulsion system tr ...

Hopkins, Randall; Thomas, Herbert; Wiegmann, Bruce; Heaton, Andrew; Johnson, Les; Baysinger, Michael; Beers, Benjamin;

Published by: AIAA SPACE 2015 Conference and Exposition      Published on:

YEAR: 2015     DOI:

Antennas; Earth (planet); Hall effect devices; Hall thrusters; Heat shielding; Interplanetary flight; NASA; Small satellites; Solar equipment; Solar radiation; Sun; Tetherlines; Trajectories; Parker Engineering;

Development and implementation of unique testing methods for the Solar Probe Plus array

As a NASA mission to touch the sun Solar Probe Plus (SPP) reveals challenges previously not encountered in space solar panel design and testing. Simulating flight conditions require new testing methods and equipment which have been specifically developed for this unique PV application. Testing under high intensity, high temperature conditions over large areas poses design and logistic challenges, while testing cell performance degradation to a measurement level error of <1% involved fabrication of custom LED simulators.
...

Gerger, Andrew; Sharps, Paul; Stall, Richard; Sulyma, Christopher; De Zetter, Karen; Johnson, Paul; Crist, Kevin;

Published by: 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015      Published on:

YEAR: 2015     DOI:

Heliostats (instruments); Light emitting diodes; NASA; Probes; Parker Engineering;



  1