PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 5 entries in the Bibliography.


Showing entries from 1 through 5


2022

Three-Dimensional Anisotropy and Scaling Properties of Solar Wind Turbulence at Kinetic Scales in the Inner Heliosphere: Parker Solar Probe Observations

We utilize the data from the Parker Solar Probe mission at its first perihelion to investigate the three-dimensional (3D) anisotropies and scalings of solar wind turbulence for the total, perpendicular, and parallel magnetic-field fluctuations at kinetic scales in the inner heliosphere. By calculating the five-point second-order structure functions, we find that the three characteristic lengths of turbulence eddies for the total and the perpendicular magnetic-field fluctuations in the local reference frame $(\hatL_\perp ,\ha ...

Zhang, J.; Huang, S.~Y.; He, J.~S.; Wang, T.~Y.; Yuan, Z.~G.; Deng, X.~H.; Jiang, K.; Wei, Y.~Y.; Xu, S.~B.; Xiong, Q.~Y.; Lin, R.~T.; Yu, L.;

Published by: \apjl      Published on: jan

YEAR: 2022     DOI: 10.3847/2041-8213/ac4027

Parker Data Used; 1534; 830

Double-power-law Feature of Energetic Particles Accelerated at Coronal Shocks

Recent observations have shown that in many large solar energetic particle (SEP) events the event-integrated differential spectra resemble double power laws. We perform numerical modeling of particle acceleration at coronal shocks propagating through a streamer-like magnetic field by solving the Parker transport equation, including protons and heavier ions. We find that for all ion species the energy spectra integrated over the simulation domain can be described by a double power law, and the break energy depends on the ion ...

Yu, Feiyu; Kong, Xiangliang; Guo, Fan; Liu, Wenlong; Jiang, Zelong; Chen, Yao; Giacalone, Joe;

Published by: \apjl      Published on: feb

YEAR: 2022     DOI: 10.3847/2041-8213/ac4cb3

1491; 1517; 1997; 1486; Astrophysics - Solar and Stellar Astrophysics

2021

The Ion Transition Range of Solar Wind Turbulence in the Inner Heliosphere: Parker Solar Probe Observations

The scaling of the turbulent spectra provides a key measurement that allows us to discriminate between different theoretical predictions of turbulence. In the solar wind, this has driven a large number of studies dedicated to this issue using in situ data from various orbiting spacecraft. While a semblance of consensus exists regarding the scaling in the magnetohydrodynamic (MHD) and dispersive ranges, the precise scaling in the transition range and the actual physical mechanisms that control it remain open questions. Using ...

Huang, S; Sahraoui, F.; Andrés, N.; Hadid, L.; Yuan, Z.; He, J.; Zhao, J.; Galtier, S.; Zhang, J.; Deng, X.; Jiang, K.; Yu, L.; Xu, S.; Xiong, Q; Wei, Y; de Wit, Dudok; Bale, S.; Kasper, J.;

Published by: The Astrophysical Journal      Published on: 03/2021

YEAR: 2021     DOI: 10.3847/2041-8213/abdaaf

Parker Data Used; Solar wind; interplanetary turbulence; Solar coronal heating; 1534; 830; 1989; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics

Characteristics of Magnetic Holes in the Solar Wind Revealed by Parker Solar Probe

Yu, L.; Huang, S.~Y.; Yuan, Z.~G.; Jiang, K.; Xiong, Q.~Y.; Xu, S.~B.; Wei, Y.~Y.; Zhang, J.; Zhang, Z.~H.;

Published by: \apj      Published on: 02/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abb9a8

Solar wind; Solar Physics; interplanetary magnetic fields; Solar magnetic fields; 1534; 1476; 824; 1503; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

2020

Kinetic Scale Slow Solar Wind Turbulence in the Inner Heliosphere: Coexistence of Kinetic Alfv\ en Waves and Alfv\ en Ion Cyclotron Waves

The nature of the plasma wave modes around the ion kinetic scales in highly Alfv\ enic slow solar wind turbulence is investigated using data from the NASA\textquoterights Parker Solar Probe taken in the inner heliosphere, at 0.18 au from the Sun. The joint distribution of the normalized reduced magnetic helicity σmRB, τ) is obtained, where θRB is the angle between the local mean magnetic field and the radial direction and τ is the temporal scale. Two populations around ion scales a ...

Huang, S; Zhang, J.; Sahraoui, F.; He, J.; Yuan, Z.; es, Andr\; Hadid, L.; Deng, X.; Jiang, K.; Yu, L.; Xiong, Q; Wei, Y; Xu, S.; Bale, S.; Kasper, J.;

Published by: The Astrophysical Journal      Published on: 07/2020

YEAR: 2020     DOI: 10.3847/2041-8213/ab9abb

1261; 1534; 1544; 1693; 1873; 23; 711; 824; 830; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus



  1