PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2023

The 17 April 2021 widespread solar energetic particle event

Context. A complex and long-lasting solar eruption on 17 April 2021 produced a widespread solar energetic particle (SEP) event that was observed by five longitudinally well-separated observers in the inner heliosphere that covered distances to the Sun from 0.42 to 1 au: BepiColombo, Parker Solar Probe, Solar Orbiter, STEREO A, and near-Earth spacecraft. The event was the second widespread SEP event detected in solar cycle 25, and it produced relativistic electrons and protons. It was associated with a long-lasting solar hard ...

Dresing, N.; ia, Rodr\; Jebaraj, I.~C.; Warmuth, A.; Wallace, S.; Balmaceda, L.; Podladchikova, T.; Strauss, R.~D.; Kouloumvakos, A.; Palmroos, C.; Krupar, V.; Gieseler, J.; Xu, Z.; Mitchell, J.~G.; Cohen, C.~M.~S.; De Nolfo, G.~A.; Palmerio, E.; Carcaboso, F.; Kilpua, E.~K.~J.; Trotta, D.; Auster, U.; Asvestari, E.; da Silva, D.; Dröge, W.; Getachew, T.; omez-Herrero, R.; Grande, M.; Heyner, D.; Holmström, M.; Huovelin, J.; Kartavykh, Y.; Laurenza, M.; Lee, C.~O.; Mason, G.; Maksimovic, M.; Mieth, J.; Murakami, G.; Oleynik, P.; Pinto, M.; Pulupa, M.; Richter, I.; iguez-Pacheco, Rodr\; anchez-Cano, B.; Schuller, F.; Ueno, H.; Vainio, R.; Vecchio, A.; Veronig, A.~M.; Wijsen, N.;

Published by: \aap      Published on: jun

YEAR: 2023     DOI: 10.1051/0004-6361/202345938

Parker Data Used; Sun: particle emission; Sun: heliosphere; Sun: flares; Sun: coronal mass ejections (CMEs); Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Identifying the energy release site in a solar microflare with a jet

Context. One of the main science questions of the Solar Orbiter and Parker Solar Probe missions deals with understanding how electrons in the lower solar corona are accelerated and how they subsequently access interplanetary space. \ Aims: We aim to investigate the electron acceleration and energy release sites as well as the manner in which accelerated electrons access the interplanetary space in the case of the SOL2021-02-18T18:05 event, a GOES A8 class microflare associated with a coronal jet. \ Methods: This study takes ...

Battaglia, Andrea; Wang, Wen; Saqri, Jonas; Podladchikova, Tatiana; Veronig, Astrid; Collier, Hannah; Dickson, Ewan; Podladchikova, Olena; Monstein, Christian; Warmuth, Alexander; Schuller, Fr\; Harra, Louise; Krucker, Säm;

Published by: \aap      Published on: feb

YEAR: 2023     DOI: 10.1051/0004-6361/202244996

Parker Data Used; Sun: flares; Sun: corona; Sun: X-rays; gamma rays; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

2010

Scaling the energy conversion rate from magnetic field reconnection to different bodies

Magnetic field reconnection is often invoked to explain electromagnetic energy conversion in planetary magnetospheres, stellar coronae, and other astrophysical objects. Because of the huge dynamic range of magnetic fields in these bodies, it is important to understand energy conversion as a function of magnetic field strength and related parameters. It is conjectured theoretically and shown experimentally that the energy conversion rate per unit area in reconnection scales as the cube of an appropriately weighted magnetic ...

Mozer, F.; Hull, A.;

Published by: Physics of Plasmas      Published on: 10/2010

YEAR: 2010     DOI: 10.1063/1.3504224

95.30.Qd; astrophysical plasma; magnetic reconnection; parker solar probe; planetary magnetism; plasma magnetohydrodynamics; solar flares; solar magnetism; Solar Probe Plus



  1