PSP Bibliography


  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 6 entries in the Bibliography.

Showing entries from 1 through 6


Statistical Study and Live Catalog of Multispacecraft $^3$He-rich Time Periods over Solar Cycles 23, 24, and 25

Using ion measurements from Ultra-Low-Energy Isotope Spectrometer observations on board Advanced Composition Explorer and Solar Isotope Spectrometer observations on board the Solar Terrestrial Observatory (STEREO)-A and STEREO-B spacecraft, we have identified 854 $^3$He-rich time periods between 1997 September and 2021 March. We include all event types with observed $^3$He enhancements such as corotating interaction regions, gradual solar energetic particle (SEP) events, interplanetary shocks, and impulsive SEP events. We em ...

Hart, S.~T.; Dayeh, M.~A.; ik, Bu\vc\; Desai, M.~I.; Ebert, R.~W.; Ho, G.~C.; Li, G.; Mason, G.~M.;

Published by: \apjs      Published on: dec

YEAR: 2022     DOI: 10.3847/1538-4365/ac91c1

Parker Data Used; Active sun; Solar energetic particles; Active Solar Corona; Solar atmosphere; Solar abundances; Heliosphere; Solar observatories; 18; 1491; 1988; 1477; 1474; 711; 1513; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics


The Solar Probe Cup on the Parker Solar Probe

Solar Probe Cup (SPC) is a Faraday cup instrument on board NASA\textquoterights Parker Solar Probe (PSP) spacecraft designed to make rapid measurements of thermal coronal and solar wind plasma. The spacecraft is in a heliocentric orbit that takes it closer to the Sun than any previous spacecraft, allowing measurements to be made where the coronal and solar wind plasma is being heated and accelerated. The SPC instrument was designed to be pointed directly at the Sun at all times, allowing the solar wind (which is flowing p ...

Case, A.; Kasper, Justin; Stevens, Michael; Korreck, Kelly; Paulson, Kristoff; Daigneau, Peter; Caldwell, Dave; Freeman, Mark; Henry, Thayne; Klingensmith, Brianna; Bookbinder, J.; Robinson, Miles; Berg, Peter; Tiu, Chris; Wright, K.; Reinhart, Matthew; Curtis, David; Ludlam, Michael; Larson, Davin; Whittlesey, Phyllis; Livi, Roberto; Klein, Kristopher; c, Mihailo;

Published by: The Astrophysical Journal Supplement Series      Published on: 02/2020

YEAR: 2020     DOI: 10.3847/1538-4365/ab5a7b

Astrophysics - Instrumentation and Methods for Astrophysics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus


Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus

The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic ...

Kasper, Justin; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart; Belcher, John; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony; Chandran, Benjamin; Cheimets, Peter; Cirtain, Jonathan; Cranmer, Steven; Curtis, David; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven; Korreck, Kelly; Larson, Davin; Lazarus, Alan; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James; Marchant, William; Maruca, Bennet; McComas, David; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew; Pogorelov, Nikolai; Reinhart, Matthew; Richardson, John; Robinson, Miles; Rosen, Irene; Skoug, Ruth; Slagle, Amanda; Steinberg, John; Stevens, Michael; Szabo, Adam; Taylor, Ellen; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S.; Zank, Gary;

Published by: Space Science Reviews      Published on: 10/2015

YEAR: 2015     DOI: 10.1007/s11214-015-0206-3

Acceleration; Corona; Heating; Parker Data Used; Solar Probe Plus; Solar wind plasma; SWEAP


Design of a spacecraft integration and test facility

The Johns Hopkins University Applied Physics Laboratory (JHU/APL) is dedicated to solving critical challenges as set forth by the National Aeronautics and Space Administration and the Department of Defense. JHU/APL participates fully in the nation s formulation of space science and exploration priorities, providing the needed science, engineering, and technology, including the production and operation of unique spacecraft, instruments, and subsystems. Built in 1983, JHU/APL s spacecraft integration and test facility has supp ...

Liggett, William; Handiboe, Jon; Theus, Eugene; Hartka, Ted; Navid, Hadi;

Published by: 28th Space Simulation Conference - Extreme Environments: Pushing the Boundaries      Published on:

YEAR: 2014     DOI:

Benchmarking; Design; Human resource management; NASA; Probes; Test facilities; Parker Engineering


Short wavelength electromagnetic perturbations excited near the Solar Probe Plus spacecraft in the inner heliosphere: 2.5D hybrid modeling

A 2.5D numerical plasma model of the interaction of the solar wind (SW) with the Solar Probe Plus spacecraft (SPPSC) is presented. These results should be interpreted as a basic plasma model derived from the SW interaction with the spacecraft (SC), which could have consequences for both plasma wave and electron plasma measurements on board the SC in the inner heliosphere. Compression waves and electric field jumps with amplitudes of about 1.5 V/m and (12-18) V/m were also observed. A strong polarization electric field was ...

Lipatov, Alexander; Sittler, Edward; Hartle, Richard; Cooper, John;

Published by: Planetary and Space Science      Published on: 03/2012

YEAR: 2012     DOI: 10.1016/j.pss.2011.12.008

Alfv\ en waves; Induced magnetospheres; Magnetic barrier; Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; Spacecraft; Whistlers


An active cooling system for the solar probe power system

The Solar Probe Plus (SPP) spacecraft will orbit the Sun closer than any other previous probe. As dictated by the current mission design, the spacecraft will achieve many perihelia as close as 9.5 RS from the Sun. During those passes, it will encounter a solar flux of ~500 suns, or 70 W/cm2. This flux is more than 50 times larger than the solar heating seen by any previous spacecraft. During the entire mission, the spacecraft and science instruments will be protected by a Thermal Protection System (TPS) ...

Lockwood, Mary; Ercol, Carl; Cho, Wei-Lin; Hartman, David; Adamson, Gary;

Published by: 40th International Conference on Environmental Systems, ICES 2010      Published on:

YEAR: 2010     DOI:

Cooling; Cooling systems; Orbits; Probes; Spacecraft; Testing; Thermoelectric equipment; Waste heat; Parker Engineering