Notice:
|
Found 4 entries in the Bibliography.
Showing entries from 1 through 4
2022 |
The incompressible energy cascade rate in anisotropic solar wind turbulence Context. The presence of a magnetic guide field induces several types of anisotropy in solar wind turbulence. The energy cascade rate between scales in the inertial range depends strongly on the direction of this magnetic guide field, splitting the energy cascade according to the parallel and perpendicular directions with respect to magnetic guide field. \ Aims: Using more than two years of Parker Solar Probe (PSP) observations, the isotropy and anisotropy energy cascade rates are investigated. The variance and normalized fl ... es, Andr\; Sahraoui, F.; Huang, S.; Hadid, L.~Z.; Galtier, S.; Published by: \aap Published on: may YEAR: 2022   DOI: 10.1051/0004-6361/202142994 Parker Data Used; turbulence; magnetohydrodynamics (MHD); plasmas; Physics - Plasma Physics; Astrophysics - Solar and Stellar Astrophysics |
The solar wind is a highly turbulent plasma for which the mean rate of energy transfer ɛ has been measured for a long time using the Politano-Pouquet (PP98) exact law. However, this law assumes statistical homogeneity that can be violated by the presence of discontinuities. Here, we introduce a new method based on the inertial dissipation $ D _I^{\sigma }$ whose analytical form is derived from incompressible magnetohydrodynamics; it can be considered as a weak and local (in space) formulation of the PP98 law whose expressio ... David, V.; Galtier, S.; Sahraoui, F.; Hadid, L.~Z.; Published by: \apj Published on: mar YEAR: 2022   DOI: 10.3847/1538-4357/ac524b Parker Data Used; interplanetary turbulence; Space plasmas; Solar wind; 830; 1544; 1534; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
2021 |
The first computations of the compressible energy transfer rate from \raisebox-0.5ex\textasciitilde0.2 up to \raisebox-0.5ex\textasciitilde1.7 au is obtained using Parker Solar Probe (PSP), Time History of Events and Macroscale Interactions during Substorms (THEMIS), and Mars Atmosphere and Volatile EvolutioN (MAVEN) observations. Using a recently derived exact relation for isothermal magnetohydrodynamics turbulence, the compressible energy cascade rate, \ensuremath\varepsilon$_C$, is computed for hundred of events at differ ... es, Andr\; Sahraoui, F.; Hadid, L.~Z.; Huang, S.~Y.; Romanelli, N.; Galtier, S.; DiBraccio, G.; Halekas, J.; Published by: \apj Published on: sep YEAR: 2021   DOI: 10.3847/1538-4357/ac0af5 Solar wind; Fast solar wind; Slow solar wind; Interplanetary physics; 1534; 1872; 1873; 827; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Parker Data Used |
The scaling of the turbulent spectra provides a key measurement that allows us to discriminate between different theoretical predictions of turbulence. In the solar wind, this has driven a large number of studies dedicated to this issue using in situ data from various orbiting spacecraft. While a semblance of consensus exists regarding the scaling in the magnetohydrodynamic (MHD) and dispersive ranges, the precise scaling in the transition range and the actual physical mechanisms that control it remain open questions. Using ... Huang, S; Sahraoui, F.; Andrés, N.; Hadid, L.; Yuan, Z.; He, J.; Zhao, J.; Galtier, S.; Zhang, J.; Deng, X.; Jiang, K.; Yu, L.; Xu, S.; Xiong, Q; Wei, Y; de Wit, Dudok; Bale, S.; Kasper, J.; Published by: The Astrophysical Journal Published on: 03/2021 YEAR: 2021   DOI: 10.3847/2041-8213/abdaaf Parker Data Used; Solar wind; interplanetary turbulence; Solar coronal heating; 1534; 830; 1989; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics |
1