PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4 entries in the Bibliography.


Showing entries from 1 through 4


2022

The incompressible energy cascade rate in anisotropic solar wind turbulence

Context. The presence of a magnetic guide field induces several types of anisotropy in solar wind turbulence. The energy cascade rate between scales in the inertial range depends strongly on the direction of this magnetic guide field, splitting the energy cascade according to the parallel and perpendicular directions with respect to magnetic guide field. \ Aims: Using more than two years of Parker Solar Probe (PSP) observations, the isotropy and anisotropy energy cascade rates are investigated. The variance and normalized fl ...

es, Andr\; Sahraoui, F.; Huang, S.; Hadid, L.~Z.; Galtier, S.;

Published by: \aap      Published on: may

YEAR: 2022     DOI: 10.1051/0004-6361/202142994

Parker Data Used; turbulence; magnetohydrodynamics (MHD); plasmas; Physics - Plasma Physics; Astrophysics - Solar and Stellar Astrophysics

Energy Transfer, Discontinuities, and Heating in the Inner Heliosphere Measured with a Weak and Local Formulation of the Politano-Pouquet Law

The solar wind is a highly turbulent plasma for which the mean rate of energy transfer ɛ has been measured for a long time using the Politano-Pouquet (PP98) exact law. However, this law assumes statistical homogeneity that can be violated by the presence of discontinuities. Here, we introduce a new method based on the inertial dissipation $ D _I^{\sigma }$ whose analytical form is derived from incompressible magnetohydrodynamics; it can be considered as a weak and local (in space) formulation of the PP98 law whose expressio ...

David, V.; Galtier, S.; Sahraoui, F.; Hadid, L.~Z.;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac524b

Parker Data Used; interplanetary turbulence; Space plasmas; Solar wind; 830; 1544; 1534; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

2021

The Evolution of Compressible Solar Wind Turbulence in the Inner Heliosphere: PSP, THEMIS, and MAVEN Observations

The first computations of the compressible energy transfer rate from \raisebox-0.5ex\textasciitilde0.2 up to \raisebox-0.5ex\textasciitilde1.7 au is obtained using Parker Solar Probe (PSP), Time History of Events and Macroscale Interactions during Substorms (THEMIS), and Mars Atmosphere and Volatile EvolutioN (MAVEN) observations. Using a recently derived exact relation for isothermal magnetohydrodynamics turbulence, the compressible energy cascade rate, \ensuremath\varepsilon$_C$, is computed for hundred of events at differ ...

es, Andr\; Sahraoui, F.; Hadid, L.~Z.; Huang, S.~Y.; Romanelli, N.; Galtier, S.; DiBraccio, G.; Halekas, J.;

Published by: \apj      Published on: sep

YEAR: 2021     DOI: 10.3847/1538-4357/ac0af5

Solar wind; Fast solar wind; Slow solar wind; Interplanetary physics; 1534; 1872; 1873; 827; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Parker Data Used

The Ion Transition Range of Solar Wind Turbulence in the Inner Heliosphere: Parker Solar Probe Observations

The scaling of the turbulent spectra provides a key measurement that allows us to discriminate between different theoretical predictions of turbulence. In the solar wind, this has driven a large number of studies dedicated to this issue using in situ data from various orbiting spacecraft. While a semblance of consensus exists regarding the scaling in the magnetohydrodynamic (MHD) and dispersive ranges, the precise scaling in the transition range and the actual physical mechanisms that control it remain open questions. Using ...

Huang, S; Sahraoui, F.; Andrés, N.; Hadid, L.; Yuan, Z.; He, J.; Zhao, J.; Galtier, S.; Zhang, J.; Deng, X.; Jiang, K.; Yu, L.; Xu, S.; Xiong, Q; Wei, Y; de Wit, Dudok; Bale, S.; Kasper, J.;

Published by: The Astrophysical Journal      Published on: 03/2021

YEAR: 2021     DOI: 10.3847/2041-8213/abdaaf

Parker Data Used; Solar wind; interplanetary turbulence; Solar coronal heating; 1534; 830; 1989; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics



  1