Notice:
|
Found 6 entries in the Bibliography.
Showing entries from 1 through 6
2022 |
Observations of Quiescent Solar Wind Regions with Near-f $_ce$ Wave Activity In situ measurements in the near-Sun solar wind from the Parker Solar Probe have revealed the existence of quiescent solar wind regions: extended regions of solar wind with low-amplitude turbulent magnetic field fluctuations compared to adjacent regions. Identified through the study of harmonic waves near the electron cyclotron frequency (f $_ce$), these quiescent regions are shown to host a variety of plasma waves. The near-f $_ce$ harmonic waves are observed exclusively in quiescent regions, and as such, they can be used a ... Short, Benjamin; Malaspina, David; Halekas, Jasper; Romeo, Orlando; Verniero, J.~L.; Finley, Adam; Kasper, Justin; Rahmati, Ali; Bale, Stuart; Bonnell, John; Case, Anthony; de Wit, Thierry; Goetz, Keith; Goodrich, Katherine; Harvey, Peter; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; Pulupa, Marc; Stevens, Michael; Whittlesey, Phyllis; Published by: \apj Published on: nov YEAR: 2022   DOI: 10.3847/1538-4357/ac97e4 Parker Data Used; Solar wind; interplanetary turbulence; Space plasmas; Solar magnetic fields; Heliosphere; 1534; 830; 1544; 1503; 711 |
2021 |
Mapping solar wind plasma back to its source is often achieved using the two-step ballistic backmapping method. Solar wind observations are mapped through the heliosphere to the edge of a PFSS model, by assuming a constant speed, radial, plasma flow. Tracing field lines through the model gives the source location at 1 R$_\ensuremath\odot$ The heliospheric mapping component hinges upon the argument that two known sources of error, stemming from solar wind acceleration and non-radial flow, effectively cancel. This assumption ... Macneil, Allan; Owens, Mathew; Finley, Adam; Matt, Sean; Published by: \mnras Published on: oct YEAR: 2021   DOI: 10.1093/mnras/stab2965 |
The angular-momentum flux in the solar wind observed during Solar Orbiter s first orbit \ Aims: We present the first measurements of the angular- momentum flux in the solar wind recorded by the Solar Orbiter spacecraft. Our aim is to validate these measurements to support future studies of the Sun s angular-momentum loss. \ Methods: We combined 60-min averages of the proton bulk moments and the magnetic field measured by the Solar Wind Analyser and the magnetometer onboard Solar Orbiter. We calculated the angular-momentum flux per solid-angle element using data from the first orbit of the mission s cruise phase ... Verscharen, Daniel; Stansby, David; Finley, Adam; Owen, Christopher; Horbury, Timothy; Maksimovic, Milan; Velli, Marco; Bale, Stuart; Louarn, Philippe; Fedorov, Andrei; Bruno, Roberto; Livi, Stefano; Khotyaintsev, Yuri; Vecchio, Antonio; Lewis, Gethyn; Anekallu, Chandrasekhar; Kelly, Christopher; Watson, Gillian; Kataria, Dhiren; Brien, Helen; Evans, Vincent; Angelini, Virginia; SWA, MAG; Teams, RPW; Published by: \aap Published on: dec YEAR: 2021   DOI: 10.1051/0004-6361/202140956 magnetohydrodynamics (MHD); plasmas; Sun: magnetic fields; Solar wind; stars: rotation; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
The contribution of alpha particles to the solar wind angular momentum flux in the inner heliosphere Context. An accurate assessment of the Sun s angular momentum (AM) loss rate is an independent constraint for models that describe the rotation evolution of Sun-like stars. Finley, A.; McManus, M.; Matt, S.; Kasper, J.; Korreck, K.; Case, A.; Stevens, M.; Whittlesey, P.; Larson, D.; Livi, R.; Bale, S.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039288 Solar wind; stars: evolution; stars: winds; outflows; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used |
2020 |
Reconnection between pairs of solar magnetic flux elements, one open and the other a closed loop, is theorized to be a crucial process for both maintaining the structure of the corona and producing the solar wind. This interchange reconnection is expected to be particularly active at the open-closed boundaries of coronal holes (CHs). Previous analysis of solar wind data at 1 au indicated that peaks in the flux of suprathermal electrons at slow-fast stream interfaces may arise from magnetic connection to the CH boundary, ra ... Macneil, Allan; Owens, Mathew; Bercic, Laura; Finley, Adam; Published by: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY Published on: 11/2020 YEAR: 2020   DOI: 10.1093/mnras/staa2660 |
The Solar Wind Angular Momentum Flux as Observed by Parker Solar Probe he long-term evolution of the Sun\textquoterights rotation period cannot be directly observed, and is instead inferred from trends in the measured rotation periods of other Sun-like stars. Assuming the Sun spins down as it ages, following rotation rate proportional to age(-1/2), requires the current\ solar\ angular momentum (AM) loss rate to be around 6 x 10(30)erg. Magnetohydrodynamic models, and previous observations of the\ solar\ wind (from the Helios and Wind spacecraft), generally predict a value ... Finley, Adam; Matt, Sean; eville, Victor; Pinto, Rui; Owens, Mathew; Kasper, Justin; Korreck, Kelly; Case, A.; Stevens, Michael; Whittlesey, Phyllis; Larson, Davin; Livi, Roberto; Published by: The Astrophysical Journal Published on: 10/2020 YEAR: 2020   DOI: 10.3847/2041-8213/abb9a5 Parker Data Used; parker solar probe; Solar evolution; Solar Physics; Solar Probe Plus; Solar rotation; Solar wind; Stellar evolution; Stellar physics; Stellar rotation |
1