Notice:
|
Found 9 entries in the Bibliography.
Showing entries from 1 through 9
2022 |
Context. Solar Orbiter and Parker Solar Probe jointly observed the solar wind for the first time in June 2020, capturing data from very different solar wind streams: calm, Alfv\ enic wind and also highly dynamic large-scale structures. Context. Our aim is to understand the origin and characteristics of the highly dynamic solar wind observed by the two probes, particularly in the vicinity of the heliospheric current sheet (HCS). \ Methods: We analyzed the plasma data obtained by Parker Solar Probe and Solar Orbiter in situ du ... Réville, V.; Fargette, N.; Rouillard, A.~P.; Lavraud, B.; Velli, M.; Strugarek, A.; Parenti, S.; Brun, A.~S.; Shi, C.; Kouloumvakos, A.; Poirier, N.; Pinto, R.~F.; Louarn, P.; Fedorov, A.; Owen, C.~J.; enot, V.; Horbury, T.~S.; Laker, R.; Brien, H.; Angelini, V.; Fauchon-Jones, E.; Kasper, J.~C.; Published by: \aap Published on: mar YEAR: 2022   DOI: 10.1051/0004-6361/202142381 Parker Data Used; Solar wind; magnetohydrodynamics (MHD); magnetic reconnection; methods: numerical; methods: data analysis; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics |
Context. Magnetic switchbacks in the solar wind are large deflections of the magnetic field vector, which often reverse their radial component, and are associated with a velocity spike consistent with their Alfv\ enic nature. The Parker Solar Probe (PSP) mission revealed them to be a dominant feature of the near-Sun solar wind. Where and how they are formed remains unclear and subject to discussion. \ Aims: We investigate the orientation of the magnetic field deflections in switchbacks to determine if they are characterized ... Fargette, Na; Lavraud, Benoit; Rouillard, Alexis; eville, Victor; Bale, Stuart; Kasper, Justin; Published by: \aap Published on: jul YEAR: 2022   DOI: 10.1051/0004-6361/202243537 Parker Data Used; Solar wind; Sun: magnetic fields; Sun: corona; Sun: photosphere; methods: data analysis; methods: statistical; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
We study the radial evolution, from 0.1 AU to the Earth, of a homogeneous recurrent fast wind, coming from the same source on the Sun, by means of new measurements by both Solar Orbiter and Parker Solar Probe. With respect to previous radial studies, we extend, for the first time, the analysis of a recurrent fast stream at distances never reached prior to the Parker Solar Probe mission. Confirming previous findings, the observations show: (i) a decrease in the radial trend of the proton density that is slower than the one ex ... Perrone, D.; Perri, S.; Bruno, R.; Stansby, D.; Amicis, R.; Jagarlamudi, V.~K.; Laker, R.; Toledo-Redondo, S.; Stawarz, J.~E.; Telloni, D.; De Marco, R.; Owen, C.~J.; Raines, J.~M.; Settino, A.; Lavraud, B.; Maksimovic, M.; Vaivads, A.; Phan, T.~D.; Fargette, N.; Louarn, P.; Zouganelis, I.; Published by: \aap Published on: dec YEAR: 2022   DOI: 10.1051/0004-6361/202243989 |
2021 |
Context. In situ measurements by several spacecraft have revealed that the solar wind is frequently perturbed by transient structures that have been interpreted as magnetic folds, jets, waves, and flux ropes that propagate rapidly away from the Sun over a large range of heliocentric distances. Parker Solar Probe (PSP), in particular, has detected very frequent rotations of the magnetic field vector at small heliocentric radial distances, accompanied by surprisingly large solar wind rotation rates. The physical origin of such ... Pinto, R.~F.; Poirier, N.; Rouillard, A.~P.; Kouloumvakos, A.; Griton, L.; Fargette, N.; Kieokaew, R.; Lavraud, B.; Brun, A.~S.; Published by: \aap Published on: sep YEAR: 2021   DOI: 10.1051/0004-6361/202040180 Sun: corona; Sun: rotation; Solar wind; Astrophysics - Solar and Stellar Astrophysics |
Parker Solar Probe (PSP) data recorded within a heliocentric radial distance of 0.3 au have revealed a magnetic field dominated by Alfv\ enic structures that undergo large local variations or even reversals of the radial magnetic field. They are called magnetic switchbacks, they are consistent with folds in magnetic field lines within a same magnetic sector and are associated with velocity spikes during an otherwise calmer background. They are thought to originate either in the low solar atmosphere through magnetic reconnect ... Fargette, Na; Lavraud, Benoit; Rouillard, Alexis; eville, Victor; de Wit, Thierry; Froment, Clara; Halekas, Jasper; Phan, Tai; Malaspina, David; Bale, Stuart; Kasper, Justin; Louarn, Philippe; Case, Anthony; Korreck, Kelly; Larson, Davin; Pulupa, Marc; Stevens, Michael; Whittlesey, Phyllis; Berthomier, Matthieu; Published by: \apj Published on: oct YEAR: 2021   DOI: 10.3847/1538-4357/ac1112 Solar wind; Solar Physics; Wavelet analysis; Supergranulation; Solar granulation; Solar magnetic fields; 1534; 1476; 1918; 1662; 1498; 1503; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used |
Exploiting white-light observations to improve estimates of magnetic connectivity The \emph\Solar Orbiter\ (\emph\SolO\) and \emph\Parker Solar Probe\ (\emph\PSP\) missions have opened up new challenges for the heliospheric scientific community. Their proximity to the Sun and their high quality measurements allow us to investigate, for the first time, potential sources for the solar wind plasma measured in situ. More accurate estimates of magnetic connectivities from spacecraft to the Sun are required to support science and operations for these missions. We present a methodology to systematically compare ... Poirier, Nicolas; Rouillard, Alexis; Kouloumvakos, Athanasios; Przybylak, Alexis; Fargette, Na; Pobeda, Rapha; eville, Victor; Pinto, Rui; Indurain, Mikel; Alexandre, Matthieu; Published by: Frontiers in Astronomy and Space Sciences Published on: may YEAR: 2021   DOI: 10.3389/fspas.2021.684734 White-Light Imagery; modeling; space weather; Sun: slow solar wind; Sun: magnetic fields; Sun: coronal streamers |
Context. The first encounters of Parker Solar Probe (PSP) with the Sun revealed the presence of ubiquitous localised magnetic deflections in the inner heliosphere; these structures, often called switchbacks, are particularly striking in solar wind streams originating from coronal holes. Froment, C.; Krasnoselskikh, V.; de Wit, Dudok; Agapitov, O.; Fargette, N.; Lavraud, B.; Larosa, A.; Kretzschmar, M.; Jagarlamudi, V.; Velli, M.; Malaspina, D.; Whittlesey, P.; Bale, S.; Case, A.; Goetz, K.; Kasper, J.; Korreck, K.; Larson, D.; MacDowall, R.; Mozer, F.; Pulupa, M.; Revillet, C.; Stevens, M.; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039806 Sun: heliosphere; Solar wind; magnetic fields; magnetic reconnection; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used |
2020 |
Magnetic increases with central current sheets: Observations with Parker Solar Probe \ Aims: We report the observation by Parker Solar Probe (PSP) of magnetic structures in the solar wind that present a strong peak in their magnetic field magnitude with an embedded central current sheet. Similar structures have been observed, either at the Earth s magnetopause and called interlinked flux tubes, or in the solar wind and called interplanetary field enhancements. \ Methods: In this work, we first investigate two striking events in detail; one occurred in the regular slow solar wind on November 2, 2018 and the o ... Fargette, N.; Lavraud, B.; Rouillard, A.; Eastwood, J.; Bale, S.; Phan, T.; Oieroset, M.; Halekas, J.; Kasper, J.; Berthomier, M.; Case, A.; Korreck, K.; Larson, D.; Louarn, P.; Malaspina, D.; Pulupa, M.; Stevens, M.; Whittlesey, P.; al., et; Published by: Astronomy and Astrophysics Published on: jun YEAR: 2020   DOI: "10.1051/0004-6361/202039191" |
We present heliospheric current sheet (HCS) and plasma sheet (HPS) observations during Parker Solar Probe\textquoterights (PSP) first orbit around the Sun. We focus on the eight intervals that display a true sector boundary (TSB; based on suprathermal electron pitch angle distributions) with one or several associated current sheets. The analysis shows that (1) the main density enhancements in the vicinity of the TSB and HCS are typically associated with electron strahl dropouts, implying magnetic disconnection from the Su ... Lavraud, B.; Fargette, N.; Réville, V.; Szabo, A.; Huang, J.; Rouillard, A.; Viall, N.; Phan, T.; Kasper, J.; Bale, S.; Berthomier, M.; Bonnell, J.; Case, A.; de Wit, Dudok; Eastwood, J.; enot, V.; Goetz, K.; Griton, L.; Halekas, J.; Harvey, P.; Kieokaew, R.; Klein, K.; Korreck, K.; Kouloumvakos, A.; Larson, D.; Lavarra, M.; Livi, R.; Louarn, P.; MacDowall, R.; Maksimovic, M.; Malaspina, D.; Nieves-Chinchilla, T.; Pinto, R.; Poirier, N.; Pulupa, M.; Raouafi, N.; Stevens, M.; Toledo-Redondo, S.; Whittlesey, P.; Published by: The Astrophysical Journal Published on: 05/2020 YEAR: 2020   DOI: 10.3847/2041-8213/ab8d2d |
1