Notice:
|
Found 4 entries in the Bibliography.
Showing entries from 1 through 4
2016 |
The Solar Probe Plus Mission: Humanity\textquoterights First Visit to Our Star Solar Probe Plus (SPP) will be the first spacecraft to fly into the low solar corona. SPP\textquoterights main science goal is to determine the structure and dynamics of the Sun\textquoterights coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Understanding these fundamental phenomena has been a top-priority science goal for over five decades, dating back to the 1958 Simpson Committee Report. The scale and concept of su ... Fox, N.; Velli, M.; Bale, S.; Decker, R.; Driesman, A.; Howard, R.; Kasper, J.; Kinnison, J.; Kusterer, M.; Lario, D.; Lockwood, M.; McComas, D.; Raouafi, N.; Szabo, A.; Published by: Space Science Reviews Published on: 12/2016 YEAR: 2016   DOI: 10.1007/s11214-015-0211-6 Corona; Heliophysics; NASA mission; Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; SPP |
2012 |
Estimating Upper Limits of Solar Flare Hard X-Ray Fluences for Space Missions Near the Sun We present a method to estimate an upper limit of the mission integrated fluence of hard X-rays (HXRs) produced by solar flares for a probe traveling at heliocentric distances R<1 AU. By using (1) the number and peak of both soft X-ray (SXR) flares and microwave (MW) solar bursts observed during the last three solar cycles, (2) either frequency distributions of HXR flare parameters, or correlations between the HXR fluence and the SXR flare class or the MW burst flux intensity, and (3) virtual launches of the probe at differe ... Published by: Published on: YEAR: 2012   DOI: 10.1063/1.4768741 |
2011 |
A method to estimate both solar energetic particle mission-integrated fluences and solar energetic particle peak intensities for missions traveling through the innermost part of the heliosphere (r \< 1 AU) is presented. By using (1) an extensive data set of particle intensities measured at 1 AU over the last three solar cycles, (2) successive launch dates for the mission traveling close to the Sun over the time interval spanned by our data set, and (3) appropriate radial dependences to extrapolate fluences and peak int ... Published by: Space Weather Published on: 11/2011 YEAR: 2011   DOI: 10.1029/2011SW000708 Interplanetary Physics: Energetic particles (7514); Interplanetary Physics: Instruments and techniques; Interplanetary Physics: Solar cycle variations (7536); Parker Data Used; parker solar probe; Solar Probe Plus; space weather |
2010 |
THE SOLAR PROBE PLUS SOLAR ARRAY DEVELOPMENT AND DESIGN The Solar Probe Plus (SPP) spacecraft will orbit as closely as 9.5 solar radii from the sun; so close that its thermal protection shield (TPS) will reach a peak temperature of 1,400C. To work in this environment, the solar array will use pressurized water cooling and operate in the penumbra formed by the TPS at a 68 degrees angle of incidence. Even with these mitigations, the array will be subject to extremely high intensity and temperature. This paper will summarize the array s environment, present a preliminary design, out ... Gaddy, Edward; Decker, Rob; Lockwood, Mary; Roufberg, Lew; Knutzen, Gayle; Marsh, Danielle; Published by: Published on: YEAR: 2010   DOI: 10.1109/PVSC.2010.5617077 |
1