PSP Bibliography


  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 3 entries in the Bibliography.

Showing entries from 1 through 3


Modification of Velocity Power Spectra by Thermal Plasma Instrumentation

The upcoming Solar Probe Plus mission (Launch 2018) will launch with the newest and fastest space plasma instrumentation to date. The Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, which measures thermal plasma, will make measurements faster than the local gyro-frequency and proton plasma frequency. By developing an end-to-end computer model of a SWEAP instrument, this work explores the specific instrumental effects of thermal space plasma measurement, particularly in the reproduction of velocity power s ...

Whittlesey, P.; Zank, G.; Cirtain, J.; Wright, K.; Case, A.; Kasper, J.;

Published by:       Published on:

YEAR: 2016     DOI: 10.1088/1742-6596/767/1/012026

Parker Data Used


Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus

The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic ...

Kasper, Justin; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart; Belcher, John; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony; Chandran, Benjamin; Cheimets, Peter; Cirtain, Jonathan; Cranmer, Steven; Curtis, David; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven; Korreck, Kelly; Larson, Davin; Lazarus, Alan; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James; Marchant, William; Maruca, Bennet; McComas, David; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew; Pogorelov, Nikolai; Reinhart, Matthew; Richardson, John; Robinson, Miles; Rosen, Irene; Skoug, Ruth; Slagle, Amanda; Steinberg, John; Stevens, Michael; Szabo, Adam; Taylor, Ellen; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S.; Zank, Gary;

Published by: Space Science Reviews      Published on: 10/2015

YEAR: 2015     DOI: 10.1007/s11214-015-0206-3

Acceleration; Corona; Heating; Parker Data Used; Solar Probe Plus; Solar wind plasma; SWEAP


AIP Conference ProceedingsDesigning a sun-pointing Faraday cup for solar probe plus

The NASA Solar Probe Plus (SPP) mission will be the first spacecraft to pass through the sub-Alfv\ enic solar corona. The objectives of the mission are to trace the flow of energy that heats and accelerates the solar corona and solar wind, to determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind, and to explore mechanisms that accelerate and transport energetic particles. The Solar Wind Electrons, Alphas, and Protons (SWEAP) Investigation instrument suite on SPP will measu ...

Case, A.; Kasper, J.; Daigneau, P.; Caldwell, D.; Freeman, M.; Gauron, T.; Maruca, B.; Bookbinder, J.; Korreck, K.; Cirtain, J.; Effinger, M.; Halekas, J.; Larson, D.; Lazarus, A.; Stevens, M.; Taylor, E.; Wright, K.;

Published by:       Published on: jun

YEAR: 2013     DOI: 10.1063/1.4811083

Parker Data Used