Notice:
|
Found 3 entries in the Bibliography.
Showing entries from 1 through 3
2018 |
Orbit determination covariance analyses for the parker solar probe mission This paper details pre-launch navigation covariance analyses for the Parker Solar Probe mission. Baseline models and error assumptions are outlined. The results demonstrate how navigation will satisfy requirements and are used to define operational plans. A few sensitivities are identified and the accompanying investigations are described. Predicted state uncertainty results show that most requirements are met with substantial margin. Moreover, navigation sensitivities may be accommodated operationally and this has been inco ... Jones, Drew; Thompson, Paul; Valerino, Powtawche; Lau, Eunice; Goodson, Troy; Chung, Min-Kun; Mottinger, Neil; Published by: Advances in the Astronautical Sciences Published on: |
Parker solar probe navigation: One year from launch Parker Solar Probe (PSP) will be the first spacecraft designed to fly deep within the Sun’s lower corona and also becoming the fastest spacecraft flown. Launch is scheduled for next year, with a 20-day launch period beginning on 31 July 2018. PSP will be on a ballistic trajectory, requiring seven Venus flybys to progressively lower the perihelion over the seven-year mission. This near-solar environment can be particularly challenging from a spacecraft design as well as a navigation perspective. We discuss an overview o ... Thompson, Paul; Goodson, Troy; Chung, Min-Kun; Jones, Drew; Lau, Eunice; Mottinger, Neil; Valerino, Powtawche; Published by: Advances in the Astronautical Sciences Published on: |
Flight path control analysis for parker solar probe An unprecedented NASA mission to study the Sun, known as Parker Solar Probe (PSP), is under development. The primary objective of the PSP mission is to gather new data within 10 solar radii of the Sun’s center. The purpose of this paper is to review the statistical analysis of trajectory correction maneuvers (TCMs) for PSP’s baseline trajectory. The baseline mission includes a total of 42 TCMs that will be accomplished with a monopropellant propulsion system that consists of twelve 4.4 N thrusters. Assuming curre ... Valerino, Powtawche; Thompson, Paul; Jones, Drew; Goodson, Troy; Chung, Min-Kun; Mottinger, Neil; Published by: Advances in the Astronautical Sciences Published on: Astrophysics; NASA; Probes; Propulsion; Statistical methods; Parker Engineering |
1