PSP Bibliography



Found 19 entries in the Bibliography.


Showing entries from 1 through 19


2020

Using Stereoscopic Observations of Cometary Plasma Tails to Infer Solar Wind Speed

Detection of the solar wind speed near the Sun is significant in understanding the heating and acceleration of the solar wind. Cometary plasma tails have long been used as natural probes for solar wind speed; previous solar wind speed estimates via plasma tails, however, were based on comet images from a single viewpoint, and the projection effect may influence the result. Using stereoscopic observations from the Solar Terrestrial Relations Observatory and the Solar and Heliospheric Observatory, we three-dimensionally rec ...

Cheng, Long; Zhang, Quanhao; Wang, Yuming; Li, Xiaolei; Liu, Rui;

YEAR: 2020     DOI: 10.3847/1538-4357/ab93b6

1534; parker solar probe; Solar Probe Plus

Constraining Ion-Scale Heating and Spectral Energy Transfer in Observations of Plasma Turbulence

We perform a statistical study of the turbulent power spectrum at inertial and kinetic scales observed during the first perihelion encounter of the Parker Solar Probe. We find that often there is an extremely steep scaling range of the power spectrum just above the ion-kinetic scales, similar to prior observations at 1 A.U., with a power-law index of around -4 . Based on our measurements, we demonstrate that either a significant (\>50 \%) fraction of the total turbulent energy flux is dissipated in this range of scales ...

Bowen, Trevor; Mallet, Alfred; Bale, Stuart; Bonnell, J.; Case, Anthony; Chandran, Benjamin; Chasapis, Alexandros; Chen, Christopher; Duan, Die; de Wit, Thierry; Goetz, Keith; Halekas, Jasper; Harvey, Peter; Kasper, J.; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; Malaspina, David; McManus, Michael; Pulupa, Marc; Stevens, Michael; Whittlesey, Phyllis;

YEAR: 2020     DOI: 10.1103/PhysRevLett.125.025102

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

Effects of Radial Distances on Small-scale Magnetic Flux Ropes in the Solar Wind

Small-scale magnetic flux ropes (SFRs) in the solar wind have been studied for decades. Statistical analysis utilizing various in situ spacecraft measurements is the main observational approach to investigating the generation and evolution of these small-scale structures. Based on the Grad-Shafranov reconstruction technique, we use the automated detection algorithm to build the databases of these small-scale structures via various spacecraft measurements at different heliocentric distances. We present the SFR properties, ...

Chen, Yu; Hu, Qiang;

YEAR: 2020     DOI: 10.3847/1538-4357/ab8294

Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics - Space Physics; Solar Probe Plus

Solar Energetic Particles Produced by a Slow Coronal Mass Ejection at \~0.25 au

We present an analysis of Parker Solar Probe (PSP) IS☉IS observations of ̃30-300 keV n-1 ions on 2018 November 11 when PSP was about 0.25 au from the Sun. Five hours before the onset of a solar energetic particle (SEP) event, a coronal mass ejection (CME) was observed by STEREO-A/COR2, which crossed PSP about a day later. No shock was observed locally at PSP, but the CME may have driven a weak shock earlier. The SEP event was dispersive, with higher energy ions arriving before the lower energy ones. Timing s ...

Giacalone, J.; Mitchell, D.; Allen, R.; Hill, M.; McNutt, R.; Szalay, J.; Desai, M.; Rouillard, A.; Kouloumvakos, A.; McComas, D.; Christian, E.; Schwadron, N.; Wiedenbeck, M.; Bale, S.; Brown, L.; Case, A.; Chen, X.; Cohen, C.; Joyce, C.; Kasper, J.; Klein, K.; Korreck, K.; Larson, D.; Livi, R.; Leske, R.; MacDowall, R.; Matthaeus, W.; Mewaldt, R.; Nieves-Chinchilla, T.; Pulupa, M.; Roelof, E.; Stevens, M.; Szabo, A.; Whittlesey, P.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5221

Parker Data Used; parker solar probe; Solar Probe Plus

The Solar Probe ANalyzers\textemdashElectrons on the Parker Solar Probe

Electrostatic analyzers of different designs have been used since the earliest days of the space age, beginning with the very earliest solar-wind measurements made by Mariner 2 en route to Venus in 1962. The Parker Solar Probe (PSP) mission, NASA\textquoterights first dedicated mission to study the innermost reaches of the heliosphere, makes its thermal plasma measurements using a suite of instruments called the Solar Wind Electrons, Alphas, and Protons (SWEAP) investigation. SWEAP\textquoterights electron PSP Analyzer (S ...

Whittlesey, Phyllis; Larson, Davin; Kasper, Justin; Halekas, Jasper; Abatcha, Mamuda; Abiad, Robert; Berthomier, M.; Case, A.; Chen, Jianxin; Curtis, David; Dalton, Gregory; Klein, Kristopher; Korreck, Kelly; Livi, Roberto; Ludlam, Michael; Marckwordt, Mario; Rahmati, Ali; Robinson, Miles; Slagle, Amanda; Stevens, M.; Tiu, Chris; Verniero, J.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab7370

Astrophysics - Instrumentation and Methods for Astrophysics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar coronal heating; Solar instruments; Solar Probe Plus; Solar wind; Space plasmas

Switchbacks in the Near-Sun Magnetic Field: Long Memory and Impact on the Turbulence Cascade

One of the most striking observations made by Parker Solar Probe during its first solar encounter is the omnipresence of rapid polarity reversals in a magnetic field that is otherwise mostly radial. These so-called switchbacks strongly affect the dynamics of the magnetic field. We concentrate here on their macroscopic properties. First, we find that these structures are self-similar, and have neither a characteristic magnitude, nor a characteristic duration. Their waiting time statistics show evidence of aggregation. The ...

de Wit, Thierry; Krasnoselskikh, Vladimir; Bale, Stuart; Bonnell, John; Bowen, Trevor; Chen, Christopher; Froment, Clara; Goetz, Keith; Harvey, Peter; Jagarlamudi, Vamsee; Larosa, Andrea; MacDowall, Robert; Malaspina, David; Matthaeus, William; Pulupa, Marc; Velli, Marco; Whittlesey, Phyllis;

YEAR: 2020     DOI: 10.3847/1538-4365/ab5853

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Cross Helicity Reversals in Magnetic Switchbacks

We consider 2D joint distributions of normalized residual energy, σr(s, t), and cross helicity, σc(s, t), during one day of Parker Solar Probe\textquoterights (PSP\textquoterights) first encounter as a function of wavelet scale s. The broad features of the distributions are similar to previous observations made by Helios in slow solar wind, namely well-correlated and fairly Alfv\ enic wind, except for a population with negative cross helicity that is seen at shorter wavelet scales. We show that thi ...

McManus, Michael; Bowen, Trevor; Mallet, Alfred; Chen, Christopher; Chandran, Benjamin; Bale, Stuart; Larson, Davin; de Wit, Thierry; Kasper, J.; Stevens, Michael; Whittlesey, Phyllis; Livi, Roberto; Korreck, Kelly; Goetz, Keith; Harvey, Peter; Pulupa, Marc; MacDowall, Robert; Malaspina, David; Case, Anthony; Bonnell, J.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab6dce

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

The Enhancement of Proton Stochastic Heating in the Near-Sun Solar Wind

Stochastic heating (SH) is a nonlinear heating mechanism driven by the violation of magnetic moment invariance due to large-amplitude turbulent fluctuations producing diffusion of ions toward higher kinetic energies in the direction perpendicular to the magnetic field. It is frequently invoked as a mechanism responsible for the heating of ions in the solar wind. Here, we quantify for the first time the proton SH rate Q at radial distances from the Sun as close as 0.16 au, using measurements from the first tw ...

c, Mihailo; Klein, Kristopher; Kasper, Justin; Case, Anthony; Korreck, Kelly; Larson, Davin; Livi, Roberto; Stevens, Michael; Whittlesey, Phyllis; Chandran, Benjamin; Alterman, Ben; Huang, Jia; Chen, Christopher; Bale, Stuart; Pulupa, Marc; Malaspina, David; Bonnell, John; Harvey, Peter; Goetz, Keith; de Wit, Thierry; MacDowall, Robert;

YEAR: 2020     DOI: 10.3847/1538-4365/ab527f

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Solar Probe Plus

The Evolution and Role of Solar Wind Turbulence in the Inner Heliosphere

The first two orbits of the Parker Solar Probe spacecraft have enabled the first in situ measurements of the solar wind down to a heliocentric distance of 0.17 au (or 36 R\ ⊙\ \ R⊙ ). Here, we present an analysis of this data to study solar wind turbulence at 0.17 au and its evolution out to 1 au. While many features remain similar, key differences at 0.17 au include increased turbulence energy levels by more than an order of magnitude, a magnetic field spectral index of -3/2 matching that of t ...

Chen, C.; Bale, S.; Bonnell, J.; Borovikov, D.; Bowen, T.; Burgess, D.; Case, A.; Chandran, B.; de Wit, Dudok; Goetz, K.; Harvey, P.; Kasper, J.; Klein, K.; Korreck, K.; Larson, D.; Livi, R.; MacDowall, R.; Malaspina, D.; Mallet, A.; McManus, M.; Moncuquet, M.; Pulupa, M.; Stevens, M.; Whittlesey, P.;

YEAR: 2020     DOI: 10.3847/1538-4365/ab60a3

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

Ion-scale Electromagnetic Waves in the Inner Heliosphere

Understanding the physical processes in the solar wind and corona that actively contribute to heating, acceleration, and dissipation is a primary objective of NASA\textquoterights Parker Solar Probe (PSP) mission. Observations of circularly polarized electromagnetic waves at ion scales suggest that cyclotron resonance and wave-particle interactions are dynamically relevant in the inner heliosphere. A wavelet-based statistical study of circularly polarized events in the first perihelion encounter of PSP demonstrates that t ...

Bowen, Trevor; Mallet, Alfred; Huang, Jia; Klein, Kristopher; Malaspina, David; Stevens, Michael; Bale, Stuart; Bonnell, J.; Case, Anthony; Chandran, Benjamin; Chaston, C.; Chen, Christopher; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Howes, Gregory; Kasper, J.; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; McManus, Michael; Pulupa, Marc; Verniero, J.; Whittlesey, Phyllis;

YEAR: 2020     DOI: 10.3847/1538-4365/ab6c65

Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus

Kinetic-scale Spectral Features of Cross Helicity and Residual Energy in the Inner Heliosphere

In this work, we present the first results from the flux angle (FA) operation mode of the Faraday Cup instrument on board the Parker Solar Probe (PSP). The FA mode allows rapid measurements of phase space density fluctuations close to the peak of the proton velocity distribution function with a cadence of 293 Hz. This approach provides an invaluable tool for understanding kinetic-scale turbulence in the solar wind and solar corona. We describe a technique to convert the phase space density fluctuations into vector velocit ...

Vech, Daniel; Kasper, Justin; Klein, Kristopher; Huang, Jia; Stevens, Michael; Chen, Christopher; Case, Anthony; Korreck, Kelly; Bale, Stuart; Bowen, Trevor; Whittlesey, Phyllis; Livi, Roberto; Larson, Davin; Malaspina, David; Pulupa, Marc; Bonnell, John; Harvey, Peter; Goetz, Keith; de Wit, Thierry; MacDowall, Robert;

YEAR: 2020     DOI: 10.3847/1538-4365/ab60a2

Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

The Radial Dependence of Proton-scale Magnetic Spectral Break in Slow Solar Wind during PSP Encounter 2

Magnetic field fluctuations in the solar wind are commonly observed to follow a power-law spectrum. Near proton-kinetic scales, a spectral break occurs that is commonly interpreted as a transition to kinetic turbulence. However, this transition is not yet entirely understood. By studying the scaling of the break with various plasma properties, it may be possible to constrain the processes leading to the onset of kinetic turbulence. Using data from the Parker Solar Probe, we measure the proton-scale break over a range of h ...

Duan, Die; Bowen, Trevor; Chen, Christopher; Mallet, Alfred; He, Jiansen; Bale, Stuart; Vech, Daniel; Kasper, J.; Pulupa, Marc; Bonnell, John; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; Malaspina, David; Stevens, Michael; Whittlesey, Phyllis;

YEAR: 2020     DOI: 10.3847/1538-4365/ab672d

Parker Data Used; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Solar Probe Plus

2019

Electron Energy Partition across Interplanetary Shocks. II. Statistics

A statistical analysis of 15,210 electron velocity distribution function (VDF) fits, observed within \textpm2 hr of 52 interplanetary (IP) shocks by the Wind spacecraft near 1 au, is presented. This is the second in a three-part series on electron VDFs near IP shocks. The electron velocity moment statistics for the dense, low-energy core, tenuous, hot halo, and field-aligned beam/strahl are a statistically significant list of values illustrated with both histograms and tabular lists for reference and baselines in future w ...

Wilson, Lynn; Chen, Li-Jen; Wang, Shan; Schwartz, Steven; Turner, Drew; Stevens, Michael; Kasper, Justin; Osmane, Adnane; Caprioli, Damiano; Bale, Stuart; Pulupa, Marc; Salem, Chadi; Goodrich, Katherine;

YEAR: 2019     DOI: 10.3847/1538-4365/ab5445

Astrophysics - Solar and Stellar Astrophysics; Interplanetary particle acceleration; Interplanetary shocks; parker solar probe; Physics - Plasma Physics; Physics - Space Physics; Plasma astrophysics; Plasma physics; Solar coronal mass ejection shocks; Solar coronal mass ejections; Solar Probe Plus; Solar wind; Space plasmas

Highly structured slow solar wind emerging from an equatorial coronal hole

During the solar minimum, when the Sun is at its least active, the solar wind is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfv\ enic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain; theories and observations suggest that they may originate at the tips of ...

Bale, S.; Badman, S.; Bonnell, J.; Bowen, T.; Burgess, D.; Case, A.; Cattell, C.; Chandran, B.; Chaston, C.; Chen, C.; Drake, J.; de Wit, Dudok; Eastwood, J.; Ergun, R.; Farrell, W.; Fong, C.; Goetz, K.; Goldstein, M.; Goodrich, K.; Harvey, P.; Horbury, T.; Howes, G.; Kasper, J.; Kellogg, P.; Klimchuk, J.; Korreck, K.; Krasnoselskikh, V.; Krucker, S.; Laker, R.; Larson, D.; MacDowall, R.; Maksimovic, M.; Malaspina, D.; Martinez-Oliveros, J.; McComas, D.; Meyer-Vernet, N.; Moncuquet, M.; Mozer, F.; Phan, T.; Pulupa, M.; Raouafi, N.; Salem, C.; Stansby, D.; Stevens, M.; Szabo, A.; Velli, M.; Woolley, T.; Wygant, J.;

YEAR: 2019     DOI: 10.1038/s41586-019-1818-7

Parker Data Used; parker solar probe; Solar Probe Plus

The Fluid-like and Kinetic Behavior of Kinetic Alfv\ en Turbulence in Space Plasma

Kinetic Alfv\ en waves (KAWs) are the short-wavelength extension of the magnetohydrodynamics Alfv\ en-wave branch in the case of highly oblique propagation with respect to the background magnetic field. Observations of space plasma show that small-scale turbulence is mainly KAW-like. We apply two theoretical approaches, a collisional two-fluid theory and a collisionless linear kinetic theory, to obtain predictions for the KAW polarizations depending on\ βp\ (the ratio of the proton th ...

Wu, Honghong; Verscharen, Daniel; Wicks, Robert; Chen, Christopher; He, Jiansen; Nicolaou, Georgios;

YEAR: 2019     DOI: 10.3847/1538-4357/aaef77

2017

The Acceleration of High-energy Protons at Coronal Shocks: The Effect of Large-scale Streamer-like Magnetic Field Structures

Recent observations have shown that coronal shocks driven by coronal mass ejections can develop and accelerate particles within several solar radii in large solar energetic particle (SEP) events. Motivated by this, we present an SEP acceleration study that including the process in which a fast shock propagates through a streamer-like magnetic field with both closed and open field lines in the low corona region. The acceleration of protons is modeled by numerically solving the Parker transport equation with spatial diffusi ...

Kong, Xiangliang; Guo, Fan; Giacalone, Joe; Li, Hui; Chen, Yao;

YEAR: 2017     DOI: 10.3847/1538-4357/aa97d7

acceleration of particles; Astrophysics - Solar and Stellar Astrophysics; parker solar probe; Physics; shock waves; Solar Probe Plus; Sun: corona; Sun: coronal mass ejections: CMEs; Sun: magnetic fields; Sun: particle emission

2016

The FIELDS Instrument Suite for Solar Probe Plus

NASA\textquoterights Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument conce ...

Bale, S.; Goetz, K.; Harvey, P.; Turin, P.; Bonnell, J.; de Wit, T.; Ergun, R.; MacDowall, R.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T.; Burgess, D.; Cattell, C.; Chandran, B.; Chaston, C.; Chen, C.; Choi, M.; Connerney, J.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J.; Farrell, W.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S.; Hayes, L.; Hinze, J.; Hollweg, J.; Horbury, T.; Howard, R.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J.; Kellogg, P.; Kien, M.; Klimchuk, J.; Krasnoselskikh, V.; Krucker, S.; Lynch, J.; Maksimovic, M.; Malaspina, D.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S.; Mozer, F.; Murphy, S.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S.; Salem, C.; Seitz, D.; Sheppard, D.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J.;

YEAR: 2016     DOI: 10.1007/s11214-016-0244-5

Coronal heating; Parker Data Used; parker solar probe; Solar Probe Plus

Constraining Solar Wind Heating Processes by Kinetic Properties of Heavy Ions

We analyze the heavy ion components (A \>4 amu ) in collisionally young solar wind plasma and show that there is a clear, stable dependence of temperature on mass, probably reflecting the conditions in the solar corona. We consider both linear and power law forms for the dependence and find that a simple linear fit of the form Ti/Tp=(1.35 \textpm.02 )mi/mp describes the observations twice as well as the equivalent best fit power law of the form Ti/Tp=(m< ...

Tracy, Patrick; Kasper, Justin; Raines, Jim; Shearer, Paul; Gilbert, Jason; Zurbuchen, Thomas;

YEAR: 2016     DOI: 10.1103/PhysRevLett.116.255101

parker solar probe; Solar Probe Plus

2015

RADIAL EVOLUTION OF A MAGNETIC CLOUD: MESSENGER , STEREO , AND VENUS EXPRESS OBSERVATIONS

The Solar Orbiter and Solar Probe Plus missions will provide observations of magnetic clouds closer to the Sun than ever before, and it will be good preparation for these missions to make full use of the most recent in situ data sets from the inner heliosphere\textemdashnamely, those provided by MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Venus Express\textemdashfor magnetic cloud studies. We present observations of the same magnetic cloud made by MESSENGER at Mercury and later by Solar T ...

Good, S.; Forsyth, R.; Raines, J.; Gershman, D.; Slavin, J.; Zurbuchen, T.;

YEAR: 2015     DOI: 10.1088/0004-637X/807/2/177

magnetic fields; parker solar probe; Solar Probe Plus; Solar wind; Sun: coronal mass ejections: CMEs; Sun: heliosphere



  1