Notice:
|
Found 7 entries in the Bibliography.
Showing entries from 1 through 7
2020 |
Small, Low-energy, Dispersive Solar Energetic Particle Events Observed by Parker Solar Probe The Energetic Particle Instrument-Low Energy (EPI-Lo) experiment has detected several weak, low-energy (̃30-300 keV nucleon-1) solar energetic particle (SEP) events during its first two closest approaches to the Sun, providing a unique opportunity to explore the sources of low-energy particle acceleration. As part of the Parker Solar Probe (PSP) Integrated Science Investigation of the Sun (IS☉IS) suite, EPI-Lo was designed to investigate the physics of energetic particles; however, in the special lowest-ener ... Hill, M.; Mitchell, D.; Allen, R.; de Nolfo, G.; Vourlidas, A.; Brown, L.; Jones, S.; McComas, D.; McNutt, R.; Mitchell, J.; Szalay, J.; Wallace, S.; Arge, C.; Christian, E.; Cohen, C.; Crew, A.; Desai, M.; Giacalone, J.; Henney, C.; Joyce, C.; Krimigis, S.; Leske, R.; Mewaldt, R.; Nelson, K.; Roelof, E.; Schwadron, N.; Wiedenbeck, M.; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab643d |
Solar Energetic Particles Produced by a Slow Coronal Mass Ejection at \~0.25 au We present an analysis of Parker Solar Probe (PSP) IS☉IS observations of ̃30-300 keV n-1 ions on 2018 November 11 when PSP was about 0.25 au from the Sun. Five hours before the onset of a solar energetic particle (SEP) event, a coronal mass ejection (CME) was observed by STEREO-A/COR2, which crossed PSP about a day later. No shock was observed locally at PSP, but the CME may have driven a weak shock earlier. The SEP event was dispersive, with higher energy ions arriving before the lower energy ones. Timing s ... Giacalone, J.; Mitchell, D.; Allen, R.; Hill, M.; McNutt, R.; Szalay, J.; Desai, M.; Rouillard, A.; Kouloumvakos, A.; McComas, D.; Christian, E.; Schwadron, N.; Wiedenbeck, M.; Bale, S.; Brown, L.; Case, A.; Chen, X.; Cohen, C.; Joyce, C.; Kasper, J.; Klein, K.; Korreck, K.; Larson, D.; Livi, R.; Leske, R.; MacDowall, R.; Matthaeus, W.; Mewaldt, R.; Nieves-Chinchilla, T.; Pulupa, M.; Roelof, E.; Stevens, M.; Szabo, A.; Whittlesey, P.; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab5221 |
2013 |
Hypervelocity Impact Response of Ti-6Al-4V and Commercially Pure Titanium Titanium alloy, Ti-6Al-4V, and commercially pure (CP) Titanium will be used to protect the Solar Probe Plus (SPP) spacecraft against hypervelocity impacts by solar dust particles. The results of six hypervelocity impact (HVI) tests performed on Ti-6Al-4V and CP monolithic samples (3 each) arc evaluated in terms of cratering and spall damage, and compared with crater depth and spall initiation predictions using the Ballistic Limit Equation (BLE) for Titanium shields developed at NASA Johnson Space Center and hydrocode computa ... Iyer, Kaushik; Poormon, Kevin; Deacon, Ryan; Mehoke, Douglas; Swaminathan, P.; Brown, Robert; Published by: Published on: YEAR: 2013   DOI: 10.1016/j.proeng.2013.05.016 |
2012 |
Use of hydrocode modeling to develop advanced MMOD shielding designs A multi-physics computations-based methodology for space debris hypervelocity impact (HVI) damage mitigation is presented. Specifically, improved debris mitigation through development of innovative, lightweight structural designs is described. The methodology has been applied to the design of the Solar Probe Plus (SPP) spacecraft to mitigate extreme solar microdust hypervelocity impacts (50-300 km/s) by the Johns Hopkins University Applied Physics Laboratory (JHU/APL). The methodology combines hydrocode computations of the c ... Iyer, Kaushik; Swaminathan, P.K.; Mehoke, Douglas; Carrasco, Cesar; Brown, Robert; Batra, Romesh; Published by: IEEE Aerospace Conference Proceedings Published on: |
A review of the Solar Probe Plus dust protection approach The Solar Probe Plus (SPP) spacecraft will go closer to the Sun than any manmade object has gone before, which has required the development of new thermal and micrometeoroid protection technologies. During the 24 solar orbits of the mission, the spacecraft will encounter a thermal environment that is 50 times more severe than any previous spacecraft. It will also travel through a dust environment previously unexplored, and be subject to particle hypervelocity impacts (HVI) at velocities much larger than anything previously e ... Mehoke, Douglas; Brown, Robert; Swaminathan, P.K.; Kerley, Gerald; Carrasco, Cesar; Iyer, Kaushik; Published by: IEEE Aerospace Conference Proceedings Published on: Dust; Earth (planet); Interplanetary flight; Particle size analysis; Probes; Space debris; Spacecraft; Parker Engineering |
Hyper velocity protection developments on the solar probe plus mission The Solar Probe Plus (SPP) spacecraft will go closer to the Sun than any manmade object has gone before. The mission includes both solar flux and micrometeoroid environments much more severe than anything experienced by previous spacecraft. As a result, new analytical and testing methodologies are being developed to ensure the success of the mission. One of the major efforts is the development of an analytical approach for hypervelocity impacts (HVI) at speeds up to 300 km/s. To date, this dust study has made several notable ... Mehoke, Douglas; Swaminathan, P.K.; Carrasco, Cesar; Brown, Robert; Iyer, Kaushik; Published by: Proceedings of the International Astronautical Congress, IAC Published on: Cooling systems; Dust; Earth (planet); Equations of state; Interplanetary flight; Probes; Thermoelectric equipment; Parker Engineering |
Use of Hydrocode Modeling to Develop Advanced MMOD Shielding Designs A multi-physics computations-based methodology for space debris hypervelocity impact (HVI) damage mitigation is presented. Specifically, improved debris mitigation through development of innovative, lightweight structural designs is described. The methodology has been applied to the design of the Solar Probe Plus (SPP) spacecraft to mitigate extreme solar microdust hypervelocity impacts (50-300 km/s) by the Johns Hopkins University Applied Physics Laboratory (JHU/APL). The methodology combines hydrocode computations of the c ... Iyer, Kaushik; Mehoke, Douglas; Brown, Robert; Swaminathan, P.; Carrasco, Cesar; Batra, Romesh; Published by: Published on: YEAR: 2012   DOI: 10.1109/AERO.2012.6187075 |
1