PSP Bibliography


  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 5 entries in the Bibliography.

Showing entries from 1 through 5


Emissivity of Boron Nitride and Metals for the Solar Probe Plus Mission

For application to the Solar Probe Plus mission (NASA), the behavior and the thermo-optical performance at very high temperatures (range 1100\textendash2200\ K) of candidate passive thermal control materials was assessed. On one hand, a pyrolytic boron nitride coating (130 μm\ 130 μm thick) was proved to be stable at high temperatures up to 2200\ K in vacuum, as well as proved, via total and spectral emissivity measurements at high temperatures, to be able to effectively turn an initially ...

Brodu, E.; Balat-Pichelin, M.;

Published by: Journal of Spacecraft and Rockets      Published on: 11/2016

YEAR: 2016     DOI: 10.2514/1.A33453

Parker Data Used; parker solar probe; Solar Probe Plus


Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus

The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic ...

Kasper, Justin; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart; Belcher, John; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony; Chandran, Benjamin; Cheimets, Peter; Cirtain, Jonathan; Cranmer, Steven; Curtis, David; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven; Korreck, Kelly; Larson, Davin; Lazarus, Alan; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James; Marchant, William; Maruca, Bennet; McComas, David; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew; Pogorelov, Nikolai; Reinhart, Matthew; Richardson, John; Robinson, Miles; Rosen, Irene; Skoug, Ruth; Slagle, Amanda; Steinberg, John; Stevens, Michael; Szabo, Adam; Taylor, Ellen; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S.; Zank, Gary;

Published by: Space Science Reviews      Published on: 10/2015

YEAR: 2015     DOI: 10.1007/s11214-015-0206-3

Acceleration; Corona; Heating; Parker Data Used; Solar Probe Plus; Solar wind plasma; SWEAP

Efficiency and behavior of textured high emissivity metallic coatings at high temperature

Three metallic coatings with textured surfaces, made of rhenium, tungsten and molybdenum, were studied in the frame of the Solar Probe Plus mission (NASA) as candidate materials. The role of these coatings is to dissipate a maximum of energy from a hot instrument facing the Sun, by the mean of their high total hemispherical emissivity. The total hemispherical emissivity of the three coatings was measured in the temperature range 1100-1900 K, as well as over time in order to study their high temperature stability. Various emi ...

Brodu, E.; Balat-Pichelin, M.; Sans, J.; Freeman, M.; Kasper, J.;

Published by: MATERIALS \& DESIGN      Published on: 10/2015

YEAR: 2015     DOI: 10.1016/j.matdes.2015.05.073

Parker Data Used

Evolution of the emissivity of tungsten at high temperature with and without proton bombardment

The Solar Probe Plus mission (NASA) will be the first mission to enter the solar corona. The spacecraft will orbit the Sun at 8.5 solar radii from the Sun s surface at closest approach. Some metallic parts of the two on-board instruments, SWEAP (a Faraday cup) and FIELDS (antennas), will directly face the Sun, while the rest of the payload will be protected by a heat shield. For application to these instruments, a candidate refractory material, tungsten, was studied, confronting conditions similar to the ones expected close ...

Brodu, E.; Balat-Pichelin, M.; Sans, J.; Kasper, J.;

Published by: ACTA MATERIALIA      Published on: 02/2015

YEAR: 2015     DOI: 10.1016/j.actamat.2014.10.050

Parker Data Used


Technology development for the Solar Probe Plus Faraday Cup

The upcoming Solar Probe Plus (SPP) mission requires novel approaches for in-situ plasma instrument design. SPP s Solar Probe Cup (SPC) instrument will, as part of the Solar Wind Electrons, Alphas, and Protons (SWEAP) instrument suite, operate over an enormous range of temperatures, yet must still accurately measure currents below 1 pico-amp, and with modest power requirements. This paper discusses some of the key technology development aspects of the SPC, a Faraday Cup and one of the few instruments on SPP that is directly ...

Freeman, Mark; Kasper, Justin; Case, Anthony; Daigneau, Peter; Gauron, Thomas; Bookbinder, Jay; Brodu, Etienne; Balat-Pichelin, Marianne; Wright, Kenneth;

Published by:       Published on:

YEAR: 2013     DOI: 10.1117/12.2024983

Parker Data Used