Notice:
|
Found 5 entries in the Bibliography.
Showing entries from 1 through 5
2023 |
Parker Solar Probe (PSP) crossed the heliospheric current sheet (HCS) near the perihelion on encounters E8 and E11, enabling the Wide- field Imager for Solar Probe (WISPR) to image the streamer belt plasma in high resolution while flying through it. With perihelia of 16 R $_\ensuremath\odot$ and 13 R $_\ensuremath\odot$ for E8 and E11, respectively, WISPR images enable investigation of the structure of density encasing the HCS at much higher resolution than reported previously. As PSP flies closer to the Sun, fine-scale stru ... Liewer, Paulett; Vourlidas, Angelos; Stenborg, Guillermo; Howard, Russell; Qiu, Jiong; Penteado, Paulo; Panasenco, Olga; Braga, Carlos; Published by: \apj Published on: may YEAR: 2023   DOI: 10.3847/1538-4357/acc8c7 Parker Data Used; Solar coronal streamers; Solar K corona; 1486; 2042 |
Parker Solar Probe Encounters the Leg of a Coronal Mass Ejection at 14 Solar Radii We use Parker Solar Probe (PSP) observations to report the first direct measurements of the particle and field environments while crossing the leg of a coronal mass ejection (CME) very close to the Sun (\raisebox-0.5ex\textasciitilde14 Rs). An analysis that combines imaging from 1 au and PSP with a CME model, predicts an encounter time and duration that correspond to an unusual, complete dropout in low-energy solar energetic ions from H-Fe, observed by the Integrated Science Investigation of the Sun (IS\ensuremath\odotIS). T ... McComas, D.~J.; Sharma, T.; Christian, E.~R.; Cohen, C.~M.~S.; Desai, M.~I.; Hill, M.~E.; Khoo, L.~Y.; Matthaeus, W.~H.; Mitchell, D.~G.; Pecora, F.; Rankin, J.~S.; Schwadron, N.~A.; Szalay, J.~R.; Shen, M.~M.; Braga, C.~R.; Mostafavi, P.~S.; Bale, S.~D.; Published by: \apj Published on: feb YEAR: 2023   DOI: 10.3847/1538-4357/acab5e Parker Data Used; Solar coronal mass ejections; interplanetary magnetic fields; Interplanetary medium; Interplanetary particle acceleration; Solar energetic particles; Solar wind; Solar coronal heating; Solar magnetic flux emergence; 310; 824; 825; 826; 1491; 1534; 1989; 2000 |
2022 |
Coronal Mass Ejection Deformation at 0.1 au Observed by WISPR Although coronal mass ejections (CMEs) resembling flux ropes generally expand self-similarly, deformations along their fronts have been reported in observations and simulations. We present evidence of one CME becoming deformed after a period of self-similar expansion in the corona. The event was observed by multiple white-light imagers on 2021 January 20-22. The change in shape is evident in observations from the heliospheric imagers from the Wide-Field Imager for Solar Probe Plus (WISPR), which observed this CME for \raiseb ... Braga, Carlos; Vourlidas, Angelos; Liewer, Paulett; Hess, Phillip; Stenborg, Guillermo; Riley, Pete; Published by: \apj Published on: oct YEAR: 2022   DOI: 10.3847/1538-4357/ac90bf Parker Data Used; Solar coronal mass ejections; 310; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
2021 |
Internal Structure of the 2019 April 2 CME We present the first analysis of internal coronal mass ejection (CME) structure observed very close to the Sun by the Wide-field Imager for Solar PRobe (WISPR) instrument on board the Parker Solar Probe (PSP). The transient studied here is a CME observed during PSP s second perihelion passage on 2019 April 2, when PSP was only 40 R $_\ensuremath\odot$ from the Sun. The CME was also well observed from 1 au by the STEREO-A spacecraft, which tracks the event all the way from the Sun to 1 au. However, PSP/WISPR observes internal ... Wood, Brian; Braga, Carlos; Vourlidas, Angelos; Published by: \apj Published on: dec YEAR: 2021   DOI: 10.3847/1538-4357/ac2aab Parker Data Used; 1534; 310; 825; Astrophysics - Solar and Stellar Astrophysics |
2020 |
Context. We study two coronal mass ejections (CMEs) observed between April 1 to 2, 2019 by both the inner Wide-Field Imager for Parker Solar Probe (WISPR-I) onboard the Parker Solar Probe (PSP) spacecraft (located between about 46 and 38 solar radii during this period) and the inner heliospheric imager (HI-1) onboard the Solar Terrestrial Relations Observatory Ahead (STEREO-A) spacecraft, orbiting the Sun at about 0.96 au. This is the first study of CME observations from two viewpoints in similar directions but at considerab ... Published by: Astronomy and Astrophysics Published on: jun YEAR: 2020   DOI: "10.1051/0004-6361/202039490" |
1