Notice:
|
Found 2 entries in the Bibliography.
Showing entries from 1 through 2
2021 |
The role of solar wind expansion in generating whistler waves is investigated using the EB-iPic3D code, which models solar wind expansion self-consistently within a fully kinetic semi-implicit approach. The simulation is initialized with an electron velocity distribution function modeled after observations of the Parker Solar Probe during its first perihelion at 0.166 au, consisting of a dense core and an antisunward strahl. This distribution function is initially stable with respect to kinetic instabilities. Expansion drive ... Micera, A.; Zhukov, A.~N.; opez, R.~A.; Boella, E.; Tenerani, A.; Velli, M.; Lapenta, G.; Innocenti, M.~E.; Published by: \apj Published on: sep YEAR: 2021   DOI: 10.3847/1538-4357/ac1067 Solar wind; Plasma astrophysics; Space plasmas; 1534; 1261; 1544; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics; Parker Data Used |
2020 |
We present results of a two-dimensional fully kinetic particle-in-cell simulation in order to shed light on the role of whistler waves in the scattering of strahl electrons and in the heat-flux regulation in the solar wind. We model the electron velocity distribution function as initially composed of core and strahl populations as typically encountered in the near-Sun solar wind as observed by Parker Solar Probe. We demonstrate that, as a consequence of the evolution of the electron velocity distribution function (VDF), two ... Micera, A.; Zhukov, A.; opez, R.; Innocenti, M.; Lazar, M.; Boella, E.; Lapenta, G.; Published by: The Astrophysical Journal Published on: 11/2020 YEAR: 2020   DOI: 10.3847/2041-8213/abc0e8 Parker Data Used; Solar wind; Space plasmas; Plasma astrophysics |
1