Notice:
|
Found 27 entries in the Bibliography.
Showing entries from 1 through 27
2023 |
Parker Solar Probe: Four Years of Discoveries at Solar Cycle Minimum Launched on 12 Aug. 2018, NASA s Parker Solar Probe had completed 13 of its scheduled 24 orbits around the Sun by Nov. 2022. The mission s primary science goal is to determine the structure and dynamics of the Sun s coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Parker Solar Probe returned a treasure trove of science data that far exceeded quality, significance, and quantity expectations, leading to a significant number ... Raouafi, N.~E.; Matteini, L.; Squire, J.; Badman, S.~T.; Velli, M.; Klein, K.~G.; Chen, C.~H.~K.; Matthaeus, W.~H.; Szabo, A.; Linton, M.; Allen, R.~C.; Szalay, J.~R.; Bruno, R.; Decker, R.~B.; Akhavan-Tafti, M.; Agapitov, O.~V.; Bale, S.~D.; Bandyopadhyay, R.; Battams, K.; Ber\vci\vc, L.; Bourouaine, S.; Bowen, T.~A.; Cattell, C.; Chandran, B.~D.~G.; Chhiber, R.; Cohen, C.~M.~S.; Amicis, R.; Giacalone, J.; Hess, P.; Howard, R.~A.; Horbury, T.~S.; Jagarlamudi, V.~K.; Joyce, C.~J.; Kasper, J.~C.; Kinnison, J.; Laker, R.; Liewer, P.; Malaspina, D.~M.; Mann, I.; McComas, D.~J.; Niembro-Hernandez, T.; Nieves-Chinchilla, T.; Panasenco, O.; y, Pokorn\; Pusack, A.; Pulupa, M.; Perez, J.~C.; Riley, P.; Rouillard, A.~P.; Shi, C.; Stenborg, G.; Tenerani, A.; Verniero, J.~L.; Viall, N.; Vourlidas, A.; Wood, B.~E.; Woodham, L.~D.; Woolley, T.; Published by: ßr Published on: feb YEAR: 2023   DOI: 10.1007/s11214-023-00952-4 Parker Data Used; Sun; Corona; Solar wind; plasma; magnetic fields; coronal mass ejections; parker solar probe; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Parker Solar Probe Observations of High Plasma \ensuremath\beta Solar Wind from the Streamer Belt In general, slow solar wind from the streamer belt forms a high plasma \ensuremath\beta equatorial plasma sheet around the heliospheric current sheet (HCS) crossing, namely, the heliospheric plasma sheet (HPS). Current Parker Solar Probe (PSP) observations show that the HCS crossings near the Sun could be full or partial current sheet (PCS) crossings, and they share some common features but also have different properties. In this work, using the PSP observations from encounters 4-10, we identify streamer belt solar wind from ... Huang, Jia; Kasper, J.~C.; Larson, Davin; McManus, Michael; Whittlesey, P.; Livi, Roberto; Rahmati, Ali; Romeo, Orlando; Klein, K.~G.; Sun, Weijie; van der Holst, Bart; Huang, Zhenguang; Jian, Lan; Szabo, Adam; Verniero, J.~L.; Chen, C.~H.~K.; Lavraud, B.; Liu, Mingzhe; Badman, Samuel; Niembro, Tatiana; Paulson, Kristoff; Stevens, M.; Case, A.~W.; Pulupa, Marc; Bale, Stuart; Halekas, J.~S.; Published by: \apjs Published on: apr YEAR: 2023   DOI: 10.3847/1538-4365/acbcd2 Parker Data Used; Slow solar wind; interplanetary magnetic fields; Space plasmas; 1873; 824; 1544; Physics - Space Physics |
2022 |
Badman, Samuel; Carley, Eoin; Ca\~nizares, Luis; Dresing, Nina; Jian, Lan; Lario, David; Gallagher, Peter; Oliveros, Juan; Pulupa, Marc; Bale, Stuart; Published by: \apj Published on: oct YEAR: 2022   DOI: 10.3847/1538-4357/ac90c2 Parker Data Used; Solar coronal radio emission; Active Solar Corona; Solar corona; Heliosphere; Solar energetic particles; 1993; 1988; 1483; 711; 1491; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
eville, Victor; Velli, Marco; Panasenco, Olga; Tenerani, Anna; Shi, Chen; Badman, Samuel; Bale, Stuart; Kasper, J.~C.; Stevens, Michael; Korreck, Kelly; Bonnell, J.~W.; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Larson, Davin; Livi, Roberto; Malaspina, David; MacDowall, Robert; Pulupa, Marc; Whittlesey, Phyllis; Published by: \apjs Published on: mar YEAR: 2022   DOI: 10.3847/1538-4365/ac532e |
Constraining Global Coronal Models with Multiple Independent Observables Global coronal models seek to produce an accurate physical representation of the Sun s atmosphere that can be used, for example, to drive space-weather models. Assessing their accuracy is a complex task, and there are multiple observational pathways to provide constraints and tune model parameters. Here, we combine several such independent constraints, defining a model- agnostic framework for standardized comparison. We require models to predict the distribution of coronal holes at the photosphere, and neutral line topology ... Badman, Samuel; Brooks, David; Poirier, Nicolas; Warren, Harry; Petrie, Gordon; Rouillard, Alexis; Arge, Nick; Bale, Stuart; Agüero, Diego; Harra, Louise; Jones, Shaela; Kouloumvakos, Athanasios; Riley, Pete; Panasenco, Olga; Velli, Marco; Wallace, Samantha; Published by: \apj Published on: jun YEAR: 2022   DOI: 10.3847/1538-4357/ac6610 Parker Data Used; Solar Physics; Solar corona; Solar coronal holes; Astronomical models; 1476; 1483; 1484; 86; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
Searching for a Solar Source of Magnetic-Field Switchbacks in Parker Solar Probe s First Encounter Parker Solar Probe observations show ubiquitous magnetic-field reversals closer to the Sun, often referred to as switchbacks . The switchbacks have been observed before in the solar wind near 1 AU and beyond, but their occurrence was historically rare. PSP measurements below \ensuremath\sim 0.2 AU show that switchbacks are, however, the most prominent structures in the young solar wind. In this work, we analyze remote-sensing observations of a small equatorial coronal hole to which PSP was connected during the perihel ... de Pablos, D.; Samanta, T.; Badman, S.~T.; Schwanitz, C.; Bahauddin, S.~M.; Harra, L.~K.; Petrie, G.; Cormack, Mac; Mandrini, C.~H.; Raouafi, N.~E.; Pillet, Martinez; Velli, M.; Published by: \solphys Published on: jul YEAR: 2022   DOI: 10.1007/s11207-022-02022-4 |
Strong Perpendicular Velocity-space Diffusion in Proton Beams Observed by Parker Solar Probe The SWEAP instrument suite on Parker Solar Probe (PSP) has detected numerous proton beams associated with coherent, circularly polarized, ion-scale waves observed by PSP s FIELDS instrument suite. Measurements during PSP Encounters 4-8 revealed pronounced complex shapes in the proton velocity distribution functions (VDFs), in which the tip of the beam undergoes strong perpendicular diffusion, resulting in VDF level contours that resemble a hammerhead. We refer to these proton beams, with their attendant hammerhead fe ... Verniero, J.~L.; Chandran, B.~D.~G.; Larson, D.~E.; Paulson, K.; Alterman, B.~L.; Badman, S.; Bale, S.~D.; Bonnell, J.~W.; Bowen, T.~A.; de Wit, Dudok; Kasper, J.~C.; Klein, K.~G.; Lichko, E.; Livi, R.; McManus, M.~D.; Rahmati, A.; Verscharen, D.; Walters, J.; Whittlesey, P.~L.; Published by: \apj Published on: jan YEAR: 2022   DOI: 10.3847/1538-4357/ac36d5 Parker Data Used; 1544; 23; 1534; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
2021 |
The solar wind escapes from the solar corona and is accelerated, over a short distance, to its terminal velocity. The energy balance associated with this acceleration remains poorly understood. To quantify the global electrostatic contribution to the solar wind dynamics, we empirically estimate the ambipolar electric field (E$_\ensuremath\parallel$) and potential (\ensuremath\Phi$_r,\ensuremath\infty$). We analyze electron velocity distribution functions (VDFs) measured in the near-Sun solar wind between 20.3 R$_S$ and 85.3 ... Ber\vci\vc, Laura; c, Milan; Halekas, Jasper; Landi, Simone; Owen, Christopher; Verscharen, Daniel; Larson, Davin; Whittlesey, Phyllis; Badman, Samuel; Bale, Stuart.; Case, Anthony; Goetz, Keith; Harvey, Peter; Kasper, Justin; Korreck, Kelly; Livi, Roberto; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Stevens, Michael; Published by: \apj Published on: nov YEAR: 2021   DOI: 10.3847/1538-4357/ac1f1c Parker Data Used; Solar wind; Space plasmas; Interplanetary particle acceleration; Collision processes; Space vehicle instruments; 1534; 1544; 826; 2065; 1548; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
Measurement of the open magnetic flux in the inner heliosphere down to 0.13 AU Context. Robustly interpreting sets of in situ spacecraft data of the heliospheric magnetic field (HMF) for the purpose of probing the total unsigned magnetic flux in the heliosphere is critical for constraining global coronal models as well as understanding the large scale structure of the heliosphere itself. The heliospheric flux (\ensuremath\Phi$_H$) is expected to be a spatially conserved quantity with a possible secular dependence on the solar cycle and equal to the measured radial component of the HMF weighted by the s ... Badman, Samuel; Bale, Stuart; Rouillard, Alexis; Bowen, Trevor; Bonnell, John; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Published by: \aap Published on: jun YEAR: 2021   DOI: 10.1051/0004-6361/202039407 Parker Data Used; Sun: corona; Sun: magnetic fields; Sun: heliosphere; Solar wind; methods: data analysis; methods: statistical; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
Parker Solar Probe Enters the Magnetically Dominated Solar Corona The high temperatures and strong magnetic fields of the solar corona form streams of solar wind that expand through the Solar System into interstellar space. At 09:33 UT on 28 April 2021 Parker Solar Probe entered the magnetized atmosphere of the Sun 13 million km above the photosphere, crossing below the Alfv\ en critical surface for five hours into plasma in casual contact with the Sun with an Alfv\ en Mach number of 0.79 and magnetic pressure dominating both ion and electron pressure. The spectrum of turbulence below the ... Kasper, J.~C.; Klein, K.~G.; Lichko, E.; Huang, Jia; Chen, C.~H.~K.; Badman, S.~T.; Bonnell, J.; Whittlesey, P.~L.; Livi, R.; Larson, D.; Pulupa, M.; Rahmati, A.; Stansby, D.; Korreck, K.~E.; Stevens, M.; Case, A.~W.; Bale, S.~D.; Maksimovic, M.; Moncuquet, M.; Goetz, K.; Halekas, J.~S.; Malaspina, D.; Raouafi, Nour; Szabo, A.; MacDowall, R.; Velli, Marco; de Wit, Thierry; Zank, G.~P.; Published by: \prl Published on: dec YEAR: 2021   DOI: 10.1103/PhysRevLett.127.255101 |
One of the striking observations from the Parker Solar Probe (PSP) spacecraft is the prevalence in the inner heliosphere of large amplitude, Alfv\ enic magnetic field reversals termed switchbacks. These $\delta B_R/B\sim \mathcal O (1$ ) fluctuations occur over a range of timescales and in patches separated by intervals of quiet, radial magnetic field. We use measurements from PSP to demonstrate that patches of switchbacks are localized within the extensions of plasma structures originating at the base of the corona. These ... Bale, S.~D.; Horbury, T.~S.; Velli, M.; Desai, M.~I.; Halekas, J.~S.; McManus, M.~D.; Panasenco, O.; Badman, S.~T.; Bowen, T.~A.; Chandran, B.~D.~G.; Drake, J.~F.; Kasper, J.~C.; Laker, R.; Mallet, A.; Matteini, L.; Phan, T.~D.; Raouafi, N.~E.; Squire, J.; Woodham, L.~D.; Woolley, T.; Published by: \apj Published on: dec YEAR: 2021   DOI: 10.3847/1538-4357/ac2d8c Parker Data Used; 1534; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics |
The Parker Solar Probe (PSP) mission presents a unique opportunity to study the near-Sun solar wind closer than any previous spacecraft. During its fourth and fifth solar encounters, PSP had the same orbital trajectory, meaning that solar wind was measured at the same latitudes and radial distances. We identify two streams measured at the same heliocentric distance (\raisebox-0.5ex\textasciitilde0.13au) and latitude (\raisebox-0.5ex\textasciitilde-3.5$^○$) across these encounters to reduce spatial evolution effects. By com ... Woolley, Thomas; Matteini, Lorenzo; McManus, Michael; Ber\vci\vc, Laura; Badman, Samuel; Woodham, Lloyd; Horbury, Timothy; Bale, Stuart; Laker, Ronan; Stawarz, Julia; Larson, Davin; Published by: \mnras Published on: aug YEAR: 2021   DOI: 10.1093/mnras/stab2281 Sun: heliosphere; Solar wind; magnetic fields; Parker Data Used |
The active region source of a type III radio storm observed by Parker Solar Probe during encounter 2 Context. We investigated the source of a type III radio burst storm during encounter 2 of NASA s Parker Solar Probe (PSP) mission. Harra, L.; Brooks, D.; Bale, S.; Mandrini, C.; Barczynski, K.; Sharma, R.; Badman, S.; Domínguez, Vargas; Pulupa, M.; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039514 Sun: corona; Solar wind; Sun: radio radiation; Sun: abundances; Sun: atmosphere; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used |
Context. Periodicities have frequently been reported across many wavelengths in the solar corona. Correlated periods of ~5 min, comparable to solar p-modes, are suggestive of coupling between the photosphere and the corona. Cattell, Cynthia; Glesener, Lindsay; Leiran, Benjamin; Dombeck, John; Goetz, Keith; Oliveros, Juan; Badman, Samuel; Pulupa, Marc; Bale, Stuart; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039510 Sun: radio radiation; Sun: corona; Sun: X-rays; gamma rays; Sun: oscillations; magnetic reconnection; radiation mechanisms: non-thermal; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used |
Context. Parker Solar Probe (PSP) is providing an unprecedented view of the Sun s corona as it progressively dips closer into the solar atmosphere with each solar encounter. Each set of observations provides a unique opportunity to test and constrain global models of the solar corona and inner heliosphere and, in turn, use the model results to provide a global context for interpreting such observations. Riley, Pete; Lionello, Roberto; Caplan, Ronald; Downs, Cooper; Linker, Jon; Badman, Samuel; Stevens, Michael; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039815 Sun: corona; Sun: heliosphere; Sun: magnetic fields; Solar wind; Sun: evolution; Interplanetary medium; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used |
2020 |
Statistical analysis of orientation, shape, and size of solar wind switchbacks Context. One of the main discoveries from the first two orbits of Parker Solar Probe (PSP) was the presence of magnetic switchbacks, whose deflections dominated the magnetic field measurements. Determining their shape and size could provide evidence of their origin, which is still unclear. Previous work with a single solar wind stream has indicated that these are long, thin structures although the direction of their major axis could not be determined. \ Aims: We investigate if this long, thin nature extends to other solar wi ... Laker, R.; Horbury, T.; Bale, S.; Matteini, L.; Woolley, T.; Woodham, L.; Badman, S.; Pulupa, M.; Kasper, J.; Stevens, M.; Case, A.; Korreck, K.; Published by: Astronomy and Astrophysics Published on: jun YEAR: 2020   DOI: "10.1051/0004-6361/202039354" |
Switchbacks as signatures of magnetic flux ropes generated by interchange reconnection in the corona The structure of magnetic flux ropes injected into the solar wind during reconnection in the coronal atmosphere is explored with particle-in-cell simulations and compared with in situ measurements of magnetic switchbacks from the Parker Solar Probe. We suggest that multi-x-line reconnection between open and closed flux in the corona injects flux ropes into the solar wind and that these flux ropes convect outward over long distances before eroding due to reconnection. Simulations that explore the magnetic structure of flu ... Drake, J.; Agapitov, A.; Swisdak, M.; Badman, S.; Bale, S.; Horbury, T.; Kasper, Justin; MacDowall, R.; Mozer, F.; Phan, T.; Pulupa, M.; Szabo, A.; Velli, M.; Published by: Astronomy and Astrophysics Published on: jun YEAR: 2020   DOI: "10.1051/0004-6361/202039432" |
Sensitivity of solar wind mass flux to coronal temperature Solar wind models predict that the mass flux carried away from the Sun in the solar wind should be extremely sensitive to the temperature in the corona, where the solar wind is accelerated. We perform a direct test of this prediction in coronal holes and active regions using a combination of in situ and remote sensing observations. For coronal holes, a 50\% increase in temperature from 0.8 to 1.2 MK is associated with a tripling of the coronal mass flux. This trend is maintained within active regions at temperatures over 2 M ... Stansby, D.; Bercic, L.; Matteini, L.; Owen, C.; French, R.; Baker, D.; Badman, S.; Published by: Astronomy and Astrophysics Published on: jun YEAR: 2020   DOI: "10.1051/0004-6361/202039789" |
The shape of the electron velocity distribution function plays an important role in the dynamics of the solar wind acceleration. Electrons are normally modeled with three components, the core, the halo, and the strahl. We investigate how well the fast strahl electrons in the inner heliosphere preserve the information about the coronal electron temperature at their origin. We analyzed the data obtained by two missions, Helios, spanning the distances between 65 and 215 RS, and Parker Solar Probe (PSP), reaching d ... Bercic, Laura; Larson, Davin; Whittlesey, Phyllis; Maksimovic, Milan; Badman, Samuel; Landi, Simone; Matteini, Lorenzo; Bale, Stuart.; Bonnell, John; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Kasper, Justin; Korreck, Kelly; Livi, Roberto; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Stevens, Michael; Published by: The Astrophysical Journal Published on: 04/2020 YEAR: 2020   DOI: 10.3847/1538-4357/ab7b7a Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus |
Energetic Particle Increases Associated with Stream Interaction Regions The Parker Solar Probe was launched on 2018 August 12 and completed its second orbit on 2019 June 19 with perihelion of 35.7 solar radii. During this time, the Energetic Particle Instrument-Hi (EPI-Hi, one of the two energetic particle instruments comprising the Integrated Science Investigation of the Sun, IS☉IS) measured seven proton intensity increases associated with stream interaction regions (SIRs), two of which appear to be occurring in the same region corotating with the Sun. The events are relatively weak, with ... Cohen, C.; Christian, E.; Cummings, A.; Davis, A.; Desai, M.; Giacalone, J.; Hill, M.; Joyce, C.; Labrador, A.; Leske, R.; Matthaeus, W.; McComas, D.; McNutt, R.; Mewaldt, R.; Mitchell, D.; Rankin, J.; Roelof, E.; Schwadron, N.; Stone, E.; Szalay, J.; Wiedenbeck, M.; Allen, R.; Ho, G.; Jian, L.; Lario, D.; Odstrcil, D.; Bale, S.; Badman, S.; Pulupa, M.; MacDowall, R.; Kasper, J.; Case, A.; Korreck, K.; Larson, D.; Livi, Roberto; Stevens, M.; Whittlesey, Phyllis; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab4c38 Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus |
The magnetic field measurements of the FIELDS instrument on the Parker Solar Probe (PSP) have shown intensities, throughout its first solar encounter, that require a very low source surface (SS) height ( R\ SS\ ⩽1.8R\ ⊙\ \ RSS⩽1.8R⊙ ) to be reconciled with magnetic field measurements at the Sun via potential field extrapolation (PFSS). However, during PSP\textquoterights second encounter, the situation went back to a more classic SS height ( R\ SS\ ⩽2 ... Panasenco, Olga; Velli, Marco; D\textquoterightAmicis, Raffaella; Shi, Chen; Réville, Victor; Bale, Stuart; Badman, Samuel; Kasper, Justin; Korreck, Kelly; Bonnell, J.; de Wit, Thierry; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Case, Anthony; Larson, Davin; Livi, Roberto; Stevens, Michael; Whittlesey, Phyllis; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab61f4 |
The Heliospheric Current Sheet in the Inner Heliosphere Observed by the Parker Solar Probe The Parker Solar Probe (PSP) completed its first solar encounter in 2018 November, bringing it closer to the Sun than any previous mission. This allowed in situ investigation of the heliospheric current sheet (HCS) inside the orbit of Venus. The Parker observations reveal a well defined magnetic sector structure placing the spacecraft in a negative polarity region for most of the encounter. The observed current sheet crossings are compared to the predictions of both potential field source surface and magnetohydrodynamic m ... Szabo, Adam; Larson, Davin; Whittlesey, Phyllis; Stevens, Michael; Lavraud, Benoit; Phan, Tai; Wallace, Samantha; Jones-Mecholsky, Shaela; Arge, Charles; Badman, Samuel; Odstrcil, Dusan; Pogorelov, Nikolai; Kim, Tae; Riley, Pete; Henney, Carl; Bale, Stuart; Bonnell, John; Case, Antony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Kasper, Justin; Korreck, Kelly; Koval, Andriy; Livi, Roberto; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab5dac |
We compare magnetic field measurements taken by the FIELDS instrument on board Parker Solar Probe (PSP) during its first solar encounter to predictions obtained by potential field source surface (PFSS) modeling. Ballistic propagation is used to connect the spacecraft to the source surface. Despite the simplicity of the model, our results show striking agreement with PSP\textquoterights first observations of the heliospheric magnetic field from ̃0.5 au (107.5 R☉) down to 0.16 au (35.7 R☉). Furthe ... Badman, Samuel; Bale, Stuart; Oliveros, Juan; Panasenco, Olga; Velli, Marco; Stansby, David; Buitrago-Casas, Juan; eville, Victor; Bonnell, John; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Kasper, Justin; Korreck, Kelly; Larson, Davin; Livi, Roberto; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Stevens, Michael; Whittlesey, Phyllis; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab4da7 |
During Parker Solar Probe\textquoterights first orbit, the solar wind plasma was observed in situ closer than ever before, the perihelion on 2018 November 6 revealing a flow that is constantly permeated by large-amplitude Alfv\ enic fluctuations. These include radial magnetic field reversals, or switchbacks, that seem to be a persistent feature of the young solar wind. The measurements also reveal a very strong, unexpected, azimuthal velocity component. In this work, we numerically model the solar corona during this first ... Réville, Victor; Velli, Marco; Panasenco, Olga; Tenerani, Anna; Shi, Chen; Badman, Samuel; Bale, Stuart; Kasper, J.; Stevens, Michael; Korreck, Kelly; Bonnell, J.; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Larson, Davin; Livi, Roberto; Malaspina, David; MacDowall, Robert; Pulupa, Marc; Whittlesey, Phyllis; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab4fef Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus |
Several fast solar wind streams and stream interaction regions (SIRs) were observed by the Parker Solar Probe (PSP) during its first orbit (2018 September-2019 January). During this time, several recurring SIRs were also seen at 1 au at both L1 (Advanced Composition Explorer (ACE) and Wind) and the location of the Solar Terrestrial Relations Observatory-Ahead (STEREO-A). In this paper, we compare four fast streams observed by PSP at different radial distances during its first orbit. For three of these fast stream events, ... Allen, R.; Lario, D.; Odstrcil, D.; Ho, G.; Jian, L.; Cohen, C.; Badman, S.; Jones, S.; Arge, C.; Mays, M.; Mason, G.; Bale, S.; Bonnell, J.; Case, A.; Christian, E.; de Wit, Dudok; Goetz, K.; Harvey, P.; Henney, C.; Hill, M.; Kasper, J.; Korreck, K.; Larson, D.; Livi, R.; MacDowall, R.; Malaspina, D.; McComas, D.; McNutt, R.; Mitchell, D.; Pulupa, M.; Raouafi, N.; Schwadron, N.; Stevens, M.; Whittlesey, P.; Wiedenbeck, M.; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab578f |
Statistics and Polarization of Type III Radio Bursts Observed in the Inner Heliosphere We present initial results from the Radio Frequency Spectrometer, the high-frequency component of the FIELDS experiment on the Parker Solar Probe (PSP). During the first PSP solar encounter (2018 November), only a few small radio bursts were observed. During the second encounter (2019 April), copious type III radio bursts occurred, including intervals of radio storms where bursts occurred continuously. In this paper, we present initial observations of the characteristics of type III radio bursts in the inner heliosphere, ... Pulupa, Marc; Bale, Stuart; Badman, Samuel; Bonnell, J.; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Hegedus, Alexander; Kasper, Justin; Korreck, Kelly; Krasnoselskikh, Vladimir; Larson, Davin; Lecacheux, Alain; Livi, Roberto; MacDowall, Robert; Maksimovic, Milan; Malaspina, David; Oliveros, Juan; Meyer-Vernet, Nicole; Moncuquet, Michel; Stevens, Michael; Whittlesey, Phyllis; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab5dc0 Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus |
2019 |
Highly structured slow solar wind emerging from an equatorial coronal hole During the solar minimum, when the Sun is at its least active, the solar wind is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfv\ enic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain; theories and observations suggest that they may originate at the tips of ... Bale, S.; Badman, S.; Bonnell, J.; Bowen, T.; Burgess, D.; Case, A.; Cattell, C.; Chandran, B.; Chaston, C.; Chen, C.; Drake, J.; de Wit, Dudok; Eastwood, J.; Ergun, R.; Farrell, W.; Fong, C.; Goetz, K.; Goldstein, M.; Goodrich, K.; Harvey, P.; Horbury, T.; Howes, G.; Kasper, J.; Kellogg, P.; Klimchuk, J.; Korreck, K.; Krasnoselskikh, V.; Krucker, S.; Laker, R.; Larson, D.; MacDowall, R.; Maksimovic, M.; Malaspina, D.; Martinez-Oliveros, J.; McComas, D.; Meyer-Vernet, N.; Moncuquet, M.; Mozer, F.; Phan, T.; Pulupa, M.; Raouafi, N.; Salem, C.; Stansby, D.; Stevens, M.; Szabo, A.; Velli, M.; Woolley, T.; Wygant, J.; Published by: Nature Published on: 12/2019 YEAR: 2019   DOI: 10.1038/s41586-019-1818-7 |
1