Notice:
|
Found 4 entries in the Bibliography.
Showing entries from 1 through 4
2023 |
Context. Coronal mass ejections (CMEs) are eruptions of plasma from the Sun that travel through interplanetary space and may encounter Earth. CMEs often enclose a magnetic flux rope (MFR), the orientation of which largely determines the CMEs geoeffectiveness. Current operational CME models do not model MFRs, but a number of research ones do, including the Open Solar Physics Rapid Ensemble Information (OSPREI) model. \ Aims: We report the sensitivity of OSPREI to a range of user-selected photospheric and coronal conditions. ... Ledvina, Vincent; Palmerio, Erika; Kay, Christina; Al-Haddad, Nada; Riley, Pete; Published by: \aap Published on: may YEAR: 2023   DOI: 10.1051/0004-6361/202245445 Parker Data Used; Sun: coronal mass ejections (CMEs); Sun: photosphere; Sun: magnetic fields; Solar wind; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
2022 |
On the utility of flux rope models for CME magnetic structure below 30 R$_\ensuremath\odot$ We present a comprehensive analysis of the three-dimensional magnetic flux rope structure generated during the Lynch et al. (2019, ApJ 880:97) magnetohydrodynamic (MHD) simulation of a global-scale, 360 \textdegree -wide streamer blowout coronal mass ejection (CME) eruption. We create both fixed and moving synthetic spacecraft to generate time series of the MHD variables through different regions of the flux rope CME. Our moving spacecraft trajectories are derived from the spatial coordinates of Parker Solar Probe s past enc ... Lynch, Benjamin; Al-Haddad, Nada; Yu, Wenyuan; Palmerio, Erika; Lugaz, No\; Published by: Advances in Space Research Published on: sep YEAR: 2022   DOI: 10.1016/j.asr.2022.05.004 Parker Data Used; magnetohydrodynamics (MHD); Solar corona; Coronal mass ejection (CME); magnetic flux rope; Parker Solar Probe (PSP); Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
2021 |
Predicting the Magnetic Fields of a Stealth CME Detected by Parker Solar Probe at 0.5 au Stealth coronal mass ejections (CMEs) are eruptions from the Sun that are not associated with appreciable low-coronal signatures. Because they often cannot be linked to a well-defined source region on the Sun, analysis of their initial magnetic configuration and eruption dynamics is particularly problematic. In this article, we address this issue by undertaking the first attempt at predicting the magnetic fields of a stealth CME that erupted in 2020 June from the Earth-facing Sun. We estimate its source region with the aid o ... Palmerio, Erika; Kay, Christina; Al-Haddad, Nada; Lynch, Benjamin; Yu, Wenyuan; Stevens, Michael; Pal, Sanchita; Lee, Christina; Published by: \apj Published on: oct YEAR: 2021   DOI: 10.3847/1538-4357/ac25f4 Parker Data Used; Solar coronal mass ejections; Solar corona; interplanetary magnetic fields; Solar coronal streamers; 310; 1483; 824; 1486; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
2019 |
The evolution of the magnetic field and plasma quantities inside a coronal mass ejection (CME) with distance are known from statistical studies using data from 1 au monitors, planetary missions, Helios, and Ulysses. This does not cover the innermost heliosphere, below 0.29 au, where no data are yet publicly available. Here, we describe the evolution of the properties of simulated CMEs in the inner heliosphere using two different initiation mechanisms. We compare the radial evolution of these properties with that found fro ... Al-Haddad, Nada; Lugaz, No\; Poedts, Stefaan; Farrugia, Charles; Nieves-Chinchilla, Teresa; Roussev, Ilia; Published by: The Astrophysical Journal Published on: 10/2019 YEAR: 2019   DOI: 10.3847/1538-4357/ab4126 Astrophysics - Solar and Stellar Astrophysics; Ejecta; interplanetary magnetic fields; Interplanetary physics; parker solar probe; Solar coronal mass ejections; Solar Probe Plus |
1