Notice:
|
Found 20 entries in the Bibliography.
Showing entries from 1 through 20
2022 |
Inertial-range Magnetic-fluctuation Anisotropy Observed from Parker Solar Probe s First Seven Orbits Solar wind turbulence is anisotropic with respect to the mean magnetic field. Anisotropy leads to ambiguity when interpreting in situ turbulence observations in the solar wind because an apparent change in the measurements could be due to either the change of intrinsic turbulence properties or to a simple change of the spacecraft sampling direction. We demonstrate the ambiguity using the spectral index and magnetic compressibility in the inertial range observed by the Parker Solar Probe during its first seven orbits ranging ... Zhao, L.; Zank, G.~P.; Adhikari, L.; Nakanotani, M.; Published by: \apjl Published on: jan YEAR: 2022   DOI: 10.3847/2041-8213/ac4415 Parker Data Used; 1534; 830; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics |
Turbulence in the Sub-Alfv\ enic Solar Wind The Parker Solar Probe (PSP) entered a region of sub-Alfv\ enic solar wind during encounter 8, and we present the first detailed analysis of low-frequency turbulence properties in this novel region. The magnetic field and flow velocity vectors were highly aligned during this interval. By constructing spectrograms of the normalized magnetic helicity, cross-helicity, and residual energy, we find that PSP observed primarily Alfv\ enic fluctuations, a consequence of the highly field-aligned flow that renders quasi-2D fluctuation ... Zank, G.~P.; Zhao, L.; Adhikari, L.; Telloni, D.; Kasper, J.~C.; Stevens, M.; Rahmati, A.; Bale, S.~D.; Published by: \apjl Published on: feb YEAR: 2022   DOI: 10.3847/2041-8213/ac51da |
2021 |
MHD and Ion Kinetic Waves in Field-aligned Flows Observed by Parker Solar Probe Parker Solar Probe (PSP) observed predominately Alfv\ enic fluctuations in the solar wind near the Sun where the magnetic field tends to be radially aligned. In this paper, two magnetic- field-aligned solar wind flow intervals during PSP s first two orbits are analyzed. Observations of these intervals indicate strong signatures of parallel/antiparallel-propagating waves. We utilize multiple analysis techniques to extract the properties of the observed waves in both magnetohydrodynamic (MHD) and kinetic scales. At the MHD sca ... Zhao, L.; Zank, G.~P.; He, J.~S.; Telloni, D.; Adhikari, L.; Nakanotani, M.; Kasper, J.~C.; Bale, S.~D.; Published by: \apj Published on: dec YEAR: 2021   DOI: 10.3847/1538-4357/ac28fb Parker Data Used; 1534; 23; 830; 824 |
\ Aims: Solar Orbiter (SolO) was launched on February 9, 2020, allowing us to study the nature of turbulence in the inner heliopshere. We investigate the evolution of anisotropic turbulence in the fast and slow solar wind in the inner heliosphere using the nearly incompressible magnetohydrodynamic (NI MHD) turbulence model and SolO measurements. \ Methods: We calculated the two dimensional (2D) and the slab variances of the energy in forward and backward propagating modes, the fluctuating magnetic energy, the fluctuating kin ... Adhikari, L.; Zank, G.~P.; Zhao, L.; Telloni, D.; Horbury, T.~S.; Brien, H.; Evans, V.; Angelini, V.; Owen, C.~J.; Louarn, P.; Fedorov, A.; Published by: \aap Published on: dec YEAR: 2021   DOI: 10.1051/0004-6361/202140672 |
Context. Solar Orbiter, the new-generation mission dedicated to solar and heliospheric exploration, was successfully launched on February 10, 2020, 04:03 UTC from Cape Canaveral. During its first perihelion passage in June 2020, two successive interplanetary coronal mass ejections (ICMEs), propagating along the heliospheric current sheet (HCS), impacted the spacecraft. \ Aims: This paper addresses the investigation of the ICMEs encountered by Solar Orbiter on June 7\ensuremath-8, 2020, from both an observational and a modeli ... Telloni, D.; Scolini, C.; Möstl, C.; Zank, G.~P.; Zhao, L.; Weiss, A.~J.; Reiss, M.~A.; Laker, R.; Perrone, D.; Khotyaintsev, Y.; Steinvall, K.; Sorriso-Valvo, L.; Horbury, T.~S.; Wimmer-Schweingruber, R.~F.; Bruno, R.; Amicis, R.; De Marco, R.; Jagarlamudi, V.~K.; Carbone, F.; Marino, R.; Stangalini, M.; Nakanotani, M.; Adhikari, L.; Liang, H.; Woodham, L.~D.; Davies, E.~E.; Hietala, H.; Perri, S.; omez-Herrero, R.; iguez-Pacheco, Rodr\; Antonucci, E.; Romoli, M.; Fineschi, S.; Maksimovic, M.; Sou\vcek, J.; Chust, T.; Kretzschmar, M.; Vecchio, A.; Müller, D.; Zouganelis, I.; Winslow, R.~M.; Giordano, S.; Mancuso, S.; Susino, R.; Ivanovski, S.~L.; Messerotti, M.; Brien, H.; Evans, V.; Angelini, V.; Published by: \aap Published on: dec YEAR: 2021   DOI: 10.1051/0004-6361/202140648 Parker Data Used; magnetohydrodynamics (MHD); Sun: coronal mass ejections (CMEs); Sun: evolution; Sun: heliosphere; Solar wind; solar-terrestrial relations |
Turbulence transport in the solar corona: Theory, modeling, and Parker Solar Probe A primary goal of the Parker Solar Probe (PSP) Mission is to answer the outstanding question of how the solar corona plasma is heated to the high temperatures needed for the acceleration of the solar wind. Various heating mechanisms have been suggested, but one that is gaining increasing credence is associated with the dissipation of low frequency magnetohyrodynamic (MHD) turbulence. However, the MHD turbulence models come in several flavors: one in which outwardly propagating Alfv\ en waves experience reflection from the la ... Zank, G.~P.; Zhao, L.; Adhikari, L.; Telloni, D.; Kasper, J.~C.; Bale, S.~D.; Published by: Physics of Plasmas Published on: aug YEAR: 2021   DOI: 10.1063/5.0055692 |
Flux Ropes, Turbulence, and Collisionless Perpendicular Shock Waves: High Plasma Beta Case With the onset of solar maximum and the expected increased prevalence of interplanetary shock waves, Parker Solar Probe is likely to observe numerous shocks in the next few years. An outstanding question that has received surprisingly little attention has been how turbulence interacts with collisionless shock waves. Turbulence in the supersonic solar wind is described frequently as a superposition of a majority 2D and a minority slab component. We formulate a collisional perpendicular shock-turbulence transmission problem in ... Zank, G.; Nakanotani, M.; Zhao, L.; Du, S.; Adhikari, L.; Che, H.; le Roux, J.; Published by: The Astrophysical Journal Published on: 06/2021 YEAR: 2021   DOI: 10.3847/1538-4357/abf7c8 Interplanetary shocks; interplanetary turbulence; 829; 830; Parker Data Used |
Detection of small magnetic flux ropes from the third and fourth Parker Solar Probe encounters Context. Zhao, L.; Zank, G.; Hu, Q.; Telloni, D.; Chen, Y.; Adhikari, L.; Nakanotani, M.; Kasper, J.; Huang, J.; Bale, S.; Korreck, K.; Case, A.; Stevens, M.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Larson, D.; Livi, R.; Whittlesey, P.; Klein, K.; Raouafi, N.; Published by: Astronomy and Astrophysics Published on: 06/2021 YEAR: 2021   DOI: 10.1051/0004-6361/202039298 Solar wind; Sun: magnetic fields; turbulence; methods: observational; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used |
The first radial alignment between Parker Solar Probe and Solar Orbiter spacecraft is used to investigate the evolution of solar wind turbulence in the inner heliosphere. Assuming ballistic propagation, two 1.5 hr intervals are tentatively identified as providing measurements of the same plasma parcels traveling from 0.1 to 1 au. Using magnetic field measurements from both spacecraft, the properties of turbulence in the two intervals are assessed. Magnetic spectral density, flatness, and high-order moment scaling laws are ca ... Telloni, Daniele; Sorriso-Valvo, Luca; Woodham, Lloyd; Panasenco, Olga; Velli, Marco; Carbone, Francesco; Zank, Gary; Bruno, Roberto; Perrone, Denise; Nakanotani, Masaru; Shi, Chen; Amicis, Raffaella; De Marco, Rossana; Jagarlamudi, Vamsee; Steinvall, Konrad; Marino, Raffaele; Adhikari, Laxman; Zhao, Lingling; Liang, Haoming; Tenerani, Anna; Laker, Ronan; Horbury, Timothy; Bale, Stuart; Pulupa, Marc; Malaspina, David; MacDowall, Robert; Goetz, Keith; de Wit, Thierry; Harvey, Peter; Kasper, Justin; Korreck, Kelly; Larson, Davin; Case, Anthony; Stevens, Michael; Whittlesey, Phyllis; Livi, Roberto; Owen, Christopher; Livi, Stefano; Louarn, Philippe; Antonucci, Ester; Romoli, Marco; Brien, Helen; Evans, Vincent; Angelini, Virginia; Published by: The Astrophysical Journal Published on: 05/2021 YEAR: 2021   DOI: 10.3847/2041-8213/abf7d1 Parker Data Used; Magnetohydrodynamics; Alfven waves; Space plasmas; interplanetary turbulence; Solar wind; 1964; 23; 1544; 830; 1534 |
2020 |
Modeling proton and electron heating in the fast solar wind Context. The Parker Solar Probe (PSP) measures solar wind protons and electrons near the Sun. To study the thermodynamic properties of electrons and protons, we include electron effects, such as distributed turbulent heating between protons and electrons, Coulomb collisions between protons and electrons, and heat conduction of electrons. \ Aims: We develop a general theoretical model of nearly incompressible magnetohydrodynamic (NI MHD) turbulence coupled with a solar wind model that includes electron pressure and heat flux. ... Adhikari, L.; Zank, G.P.; Zhao, L.-L.; Nakanotani, M.; Tasnim, S.; Published by: Astronomy and Astrophysics Published on: jun YEAR: 2020   DOI: "10.1051/0004-6361/202039297" |
Magnetohydrodynamic Turbulent Evolution of a Magnetic Cloud in the Outer Heliosphere Telloni, Daniele; Zhao, Lingling; Zank, Gary; Liang, Haoming; Nakanotani, Masaru; Adhikari, Laxman; Carbone, Francesco; Amicis, Raffaella; Perrone, Denise; Bruno, Roberto; Dasso, Sergio; Published by: \apjl Published on: 12/2020 YEAR: 2020   DOI: 10.3847/2041-8213/abcb03 Parker Data Used; Magnetohydrodynamics; interplanetary turbulence; Solar coronal mass ejections; interplanetary magnetic fields; Heliosphere; Solar wind; Solar magnetic reconnection; 1964; 830; 310; 824; 711; 1534; 1504 |
We propose a turbulence-driven\ solar\ wind model for a fast\ solar\ wind flow in an open coronal hole where the\ solar\ wind flow and the magnetic field are highly aligned. We compare the numerical results of our model with\ Parker\ Solar\ Probe\ measurements of the fast\ solar\ wind flow and find good agreement between them. We find that (1) the majority quasi-2D turbulence is mainly responsible for coronal heating, raising the temperature to about similar to 1 ... Adhikari, L.; Zank, G.; Zhao, L.-L.; Published by: The Astrophysical Journal Published on: 10/2020 YEAR: 2020   DOI: 10.3847/1538-4357/abb132 |
The Origin of Switchbacks in the Solar Corona: Linear Theory The origin, structure, and propagation characteristics of a switchback are compelling questions posed by Parker Solar Probe (PSP) observations of velocity spikes and magnetic field reversals. By assuming interchange reconnection between coronal loop and open magnetic field, we show that this results in the generation of upward (into the heliosphere) and downward complex structures propagating at the fast magnetosonic speed (i.e., the Alfvén speed in the low plasma beta corona) that can have an arbitrary radial magnetic fiel ... Zank, G.; Nakanotani, M.; Zhao, L.-L.; Adhikari, L.; Kasper, J.; Published by: The Astrophysical Journal Published on: 10/2020 YEAR: 2020   DOI: 10.3847/1538-4357/abb828 Parker Data Used; Active Solar Corona; Solar Coronal Waves; interplanetary turbulence |
Zank, G.~P.; Nakanotani, M.; Zhao, L.; Adhikari, L.; Telloni, D.; Published by: \apj Published on: 09/2020 YEAR: 2020   DOI: 10.3847/1538-4357/abad30 |
Spectral Features in Field-aligned Solar Wind Turbulence from Parker Solar Probe Observations Parker Solar Probe (PSP) observed a large variety of Alfv\ enic fluctuations in the fast and slow solar wind flow during its two perihelia. The properties of Alfv\ enic solar wind turbulence have been studied for decades in the near-Earth environment. A spectral index of -5/3 or -2 for magnetic field fluctuations has been observed using spacecraft measurements, which can be explained by turbulence theories of nearly incompressible magnetohydrodynamics (NI MHD) or critical balance. In this study, a rigorous search of field ... Zhao, L.-L.; Zank, G.; Adhikari, L.; Nakanotani, M.; Telloni, D.; Carbone, F.; Published by: The Astrophysical Journal Published on: 08/2020 YEAR: 2020   DOI: 10.3847/1538-4357/ab9b7e interplanetary turbulence; Parker Data Used; parker solar probe; Solar Probe Plus; Solar wind; Spectral index |
The Parker Solar Probe (PSP) observed an interplanetary coronal mass ejection (ICME) event during its first orbit around the Sun, among many other events. This event is analyzed by applying a wavelet analysis technique to obtain the reduced magnetic helicity, cross helicity, and residual energy, the first two of which are magnetohydrodynamics (MHD) invariants. Our results show that the ICME, as a large-scale magnetic flux rope, possesses high magnetic helicity, very low cross helicity, and highly negative residual energy, ... Zhao, L.-L.; Zank, G.; Adhikari, L.; Hu, Q.; Kasper, J.; Bale, S.; Korreck, K.; Case, A.; Stevens, M.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Larson, D.; Livi, R.; Whittlesey, P.; Klein, K.; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab4ff1 Astrophysics - Solar and Stellar Astrophysics; Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus |
Turbulence Transport Modeling and First Orbit Parker Solar Probe ( PSP ) Observations The Parker Solar Probe (PSP) achieved its first orbit perihelion on 2018 November 6, reaching a heliocentric distance of about 0.165 au (35.55 R☉). Here, we study the evolution of fully developed turbulence associated with the slow solar wind along the PSP trajectory between 35.55 R☉ and 131.64 R☉ in the outbound direction, comparing observations to a theoretical turbulence transport model. Several turbulent quantities, such as the fluctuating kinetic energy and the corresponding cor ... Adhikari, L.; Zank, G.; Zhao, L.-L.; Kasper, J.; Korreck, K.; Stevens, M.; Case, A.; Whittlesey, P.; Larson, D.; Livi, R.; Klein, K.; Published by: The Astrophysical Journal Supplement Series Published on: 02/2020 YEAR: 2020   DOI: 10.3847/1538-4365/ab5852 Parker Data Used; parker solar probe; Physics - Space Physics; Solar Probe Plus |
2019 |
No Evidence for Critical Balance in Field-aligned Alfv\ enic Solar Wind Turbulence Telloni, Daniele; Carbone, Francesco; Bruno, Roberto; Sorriso-Valvo, Luca; Zank, Gary; Adhikari, Laxman; Hunana, Peter; Published by: \apj Published on: 12/2019 YEAR: 2019   DOI: 10.3847/1538-4357/ab517b Parker Data Used; interplanetary turbulence; Solar wind; Space plasmas; Alfven waves; Interplanetary medium; Magnetohydrodynamics; 830; 1534; 1544; 23; 825; 1964 |
Does Turbulence Turn off at the Alfv\ en Critical Surface? The\ Parker Solar Probe\ (PSP) will eventually reach and cross the Alfv\ en point or surface as it provides us with direct in situ measurements of the solar atmosphere. The Alfv\ en surface is the location at which the large-scale bulk solar wind speed\ Published by: The Astrophysical Journal Published on: 01/2019 YEAR: 2019   DOI: 10.3847/1538-4357/ab141c |
2017 |
Turbulent Transport in a Three-dimensional Solar Wind Shiota, D.; Zank, G.~P.; Adhikari, L.; Hunana, P.; Telloni, D.; Bruno, R.; Published by: \apj Published on: 03/2017 YEAR: 2017   DOI: 10.3847/1538-4357/aa60bc Parker Data Used; magnetohydrodynamics: MHD; Solar wind; turbulence |
1