PSP Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 100 entries in the Bibliography.


Showing entries from 1 through 50


2021

Mission robustness starts with science requirements definition

In the early development stages for Parker Solar Probe (PSP), the Johns Hopkins University Applied Physics Laboratory (JHU/APL) team mapped the mission’s top-level requirements to mission success criteria to ensure that a failure of any one science instrument would not translate to a failure of the entire mission. This paper details this analytical process and shows how the results were folded into the reliability assessments. The Interstellar Probe study team is also using this process to define mission success criter ...

Smith, Clayton; Kinnison, James;

Published by: AIAA Scitech 2021 Forum      Published on:

YEAR: 2021     DOI:

Parker Engineering

Solar probe based autonomous solar tracker system-A review

The energy source which is becoming very popular nowadays is a sustainable energy source, because of the high cost and extinction of conventional fuels. One of the examples of renewable sources is solar energy. Solar energy is profusely in nature and inexhaustible energy resources around the world. The main challenge in the solar field is the less amount of solar energy captured by photovoltaic (PV) systems. To increase the efficiency of the solar power generation system we n ...

Kumar, Sarvesh; Pal, Ankur; Singh, Pallavi; Mittal, Sudhanshu; Kumar, Yatendra;

Published by: 2021 International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2021      Published on:

YEAR: 2021     DOI:

Photovoltaic cells; Solar energy; Solar power plants; Parker Engineering

2020

Parker solar probe mission design

A mission to the sun originally called Solar Probe was first considered in 1958 and stayed in concept and feasibility studies for five decades until 2007, when a new mission design was created that changed the original mission architecture. The re-designed mission was named Solar Probe Plus due to significant advantages in technical implementation and science return, and it was renamed Parker Solar Probe (PSP) in 2017. PSP was launched on August 12, 2018 as the first mission to touch the Sun. This paper presents an overview ...

Guo, Yanping;

Published by: Advances in the Astronautical Sciences      Published on:

YEAR: 2020     DOI:

Astrophysics; Atomic absorption spectrometry; Interplanetary flight; Parker Engineering

Quantifying Weather Effects on Ka-band Communication Links: A Parker Solar Probe Study

Nikoukar, Romina; Copeland, David; Sprouse, Sean; Cox, Matthew; Kufahl, Katelyn;

Published by:       Published on:

YEAR: 2020     DOI: 10.1109/AERO47225.2020.9172786

Parker Engineering

Parker Solar Probe s 1st Year of Ka-band Operations

Cox, Matthew; Copeland, David; Nikoukar, Romina; Sprouse, Sean;

Published by:       Published on:

YEAR: 2020     DOI: 10.1109/AERO47225.2020.9172588

Parker Engineering

2019

So you Passed an Earned Value Management Government Validation - Now What?

In December 2016, The Johns Hopkins University Applied Physics Laboratory (JHU/APL) received formal acceptance from NASA that its Earned Value Management System (EVMS) complied with the Electronic Industries Alliance (EIA) Standard 748 EVMS guidelines and thus had a government validated system. JHU/APL had successfully used its EVMS for single, large missions (Van Allen Probe from January 2009 to July 2012 and Parker Solar Probe from April 2014 to August 2018), but now with an increased workload JHU/APL was faced with the ne ...

Liggett, William; Hunter, Howard; Jones, Matthew;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2019     DOI:

Budget control; Electronics industry; Financial data processing; Investments; NASA; Probes; Parker Engineering

Designing, building, andtesting of a thermal protection systemfor a spacecraft which cannot be qualifiedusing standard methodology

This is a case study of the Thermal Protection System (TPS) currently in use on the Parker Solar Probe spacecraft, which over its seven year life it will experience surface temperatures in excess of 1400C. The traditional methodology for qualifying a space structure, using the old adage, "test what you fly and fly what you test" was simply not practical based on the selected materials, the size of the TPS, and a space environment characterized by its hard vacuumand hightemperatures. The approach to risk mitigation both in te ...

Schaefera, Edward; Congdon, Elizabeth; Conkey, Shelly;

Published by: Proceedings of the International Astronautical Congress, IAC      Published on:

YEAR: 2019     DOI:

Carbon carbon composites; Materials; Testing; Parker Engineering

Identifying and Mitigating Barriers to the Adoption of Dynamic Radioisotope Power Systems for Space Flight

Given increasing complexity of many safety-critical systems, many organizations like NASA need to identify when, where, and how inappropriate perceptions of risk and anchoring of trust affect technology development and acceptance, primarily from the perspective of engineers and related management. Using the adoption of Dynamic Radioisotope Power Systems (RPS) for space exploration as a backdrop, we define and explain factors that contribute to inappropriate risk perception of various stakeholders. Three case studies (Mars Sc ...

Brummel, Scott; Ostdiek, Paul; Woerner, Dave; Hibbard, Kenneth; Stofan, Ellen; Zakrajsek, June; Cummings, Mary;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2019     DOI: 10.1109/AERO.2019.8742171

Budget control; Martian surface analysis; NASA; Nuclear batteries; Planning; Probes; Radioisotopes; Safety engineering; Solar energy; Space flight; Parker Engineering

Execution of Parker solar probe s unprecedented flight to the sun and early results

Parker Solar Probe (PSP) was launched on August 12, 2018, on its way to enter the solar corona and "touch" the Sun for the first time. We utilize enormous planetary gravity assists from 7 repeated Venus flybys via a V7GA trajectory in 24 solar orbits over 7 years, to get within 8.86 solar radii from the Sun s surface. The probe successfully entered the V7GA trajectory and made the first Venus flyby only 52 days after launch. Five weeks later it flew by the Sun at a perihelion distance of 0.166 AU and fl ...

Guo, Yanping; Thompson, Paul; Wirzburger, John; Pinkine, Nick; Bushman, Stewart; Goodson, Troy; Haw, Rob; Hudson, James; Jones, Drew; Kijewski, Seth; Lathrop, Brian; Lau, Eunice; Mottinger, Neil; Ryne, Mark; Shyong, Wen-Jong; Valerino, Powtawche; Whittenburg, Karl;

Published by: Proceedings of the International Astronautical Congress, IAC      Published on:

YEAR: 2019     DOI:

Interplanetary flight; Navigation; Orbits; Space flight; Parker Engineering

Parker solar probe structural-thermal analysis challenges

The NASA Parker Solar Probe spacecraft, built by the Johns Hopkins University Applied Physics Lab will fly through the outermost part of the Sun s atmosphere taking in situ measurements and imaging to improve our understanding of the corona and the solar wind. The Thermal Protection System (TPS), a 4.5-inch thick carbon-composite heat shield, limits heat transfer to the spacecraft during its flight through the Sun s atmosphere, and casts a shadow which protects the spacecraft and its instruments from the harsh thermal enviro ...

Conkey, Shelly; Congdon, Elisabeth; Schaefer, Ed; Abel, Elizabeth;

Published by: Proceedings of the International Astronautical Congress, IAC      Published on:

YEAR: 2019     DOI:

Ability testing; Carbon carbon composites; Correlation methods; Heat shielding; Heat transfer; NASA; Orbits; Probes; Software testing; Structural properties; Temperature; Test facilities; Thermoanalysis; Thermocouples; Uncertainty analysis; Parker Engineering

Case study of the parker solar probe thermal protection system: Development of a system level process for high temperature technology achievement

Successful development of high temperature systems is complex and difficult. Limitations in testing, manufacturing and materials means that design and testing of such systems is challenging. NASA s Parker Solar Probe (PSP) Spacecraft built by the Johns Hopkins Applied Physics Laboratory was launched in August 2018 and is measuring the Sun s atmosphere in situ. A critical technology development which made this mission possible is the 4.5 inch-thick Thermal Protection System (TPS) that has to withstand 2500°F and protect t ...

Congdon, Elizabeth; Mehoke, Douglas; Conkey, Shelly; Schaefer, Ed; Abel, Elisabeth;

Published by: Proceedings of the International Astronautical Congress, IAC      Published on:

YEAR: 2019     DOI:

Heat shielding; High temperature effects; High temperature engineering; Manufacture; NASA; Probes; Thermal insulating materials; Parker Engineering

Charting a course to the sun: Flight path control for parker solar probe

The successful launch of the Parker Solar Probe (PSP) on August 12, 2018 with a Delta IV rocket and Star-48BV third stage has placed the spacecraft on a 7-year trajectory to study the Sun. The goals of PSP are to better characterize our solar environment and advance our understanding of the Sun at 9.86 Rs. A total of 42 trajectory correction maneuvers are planned. This paper documents trajectory correction maneuver analysis performed just prior to launch until just past the first solar encounter. The pre-launch analysis culm ...

Valerino, Powtawche; Thompson, Paul; Jones, Drew; Goodson, Troy; R., Haw; E., Lau; N., Mottinger; M., Ryne;

Published by: Advances in the Astronautical Sciences      Published on:

YEAR: 2019     DOI:

Probes; Rockets; Space flight; Parker Engineering

Solar Radiation Disturbance Torque Reduction for the Parker Solar Probe Observatory

This paper examines the methodology used for reducing solar pressure disturbance torques for the Parker Solar Probe (PSP) Observatory by minimizing the offset between spacecraft s Center of Gravity (CG) and Center of Pressure (CP). The force due to solar radiation pressures encountered by the PSP spacecraft, particularly at the 9.86 solar-radii (Rs) closest approach point in the orbit, are of a sufficient magnitude to produce significant disturbance torques. Inside of 0.25 AU, the Observatory is required to keep its Thermal ...

Ruiz, Felipe; Kelly, Daniel; Napolillo, David;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2019     DOI:

Ballast (railroad track); Flight control systems; Observatories; Optical properties; Orbits; Probes; Propellants; Solar radiation; Spacecraft; Torque; Well testing; Parker Engineering

Design, fabrication, test, launch, and early operation of the parker solar probe propulsion system

The Parker Solar Probe (PSP) spacecraft, part of NASA’s Living With a Star program, launched on 12 August 2018, atop a Delta IV Heavy launch vehicle with a STAR-48BV upper stage. As NASA’s mission to "touch the Sun," Parker Solar Probe will fly within 3.83 million miles of the Sun and will spend its lifetime studying the gaseous envelope surrounding it: the corona. Over the seven-year mission, PSP will orbit the Sun 24 times and utilize seven Venus fly-bys to gradually shrink its orbit around the Sun. The spacecr ...

Kijewski, Seth; Bushman, Stewart;

Published by:       Published on:

YEAR: 2019     DOI:

Automobile manufacture; Fabrication; Launch vehicles; NASA; Nitrogen compounds; Orbits; Probes; Rockets; Space flight; Stars; Parker Engineering

Verification and validation testing for the parker solar probe guidance and control system

Parker Solar Probe was launched on a 7-year mission to explore the Sun in August 2018. A successful first orbit was preceded and enabled by a rigorous test campaign prior to launch. This paper discusses two of the main portions of that test program used to characterize and verify the performance of the spacecraft’s guidance and control system. An extensive set of stand-alone simulations was designed to demonstrate compliance with performance requirements and explore system behavior in response to a large set of fault c ...

Vaughan, Robin; OShaughnessy, Daniel; Wirzburger, John;

Published by: Advances in the Astronautical Sciences      Published on:

YEAR: 2019     DOI:

Flight control systems; Flight simulators; Orbits; Probes; Testing; Parker Engineering

2018

Monolithic CMOS detectors for use as x-ray imaging spectrometers

The Smithsonian Astrophysical Observatory (SAO) in collaboration with Stanford Research Institute (SRI) has been developing monolithic CMOS detectors for use as astronomical soft X-ray imaging spectrometers since 2008. The long term goal of this collaboration is to produce X-ray Active Pixel Sensor (APS) detectors with Fano limited performance over the 0.1-10keV band for "Facility Class" missions such as Lynx. Since CMOS x-ray imagers consume very little power; are inherently "radiation hard"; have high levels of integration ...

Kenter, Almus; Kraft, Ralph; Gauron, Thomas;

Published by: Proceedings of SPIE - The International Society for Optical Engineering      Published on:

YEAR: 2018     DOI:

Cameras; CMOS integrated circuits; gamma rays; MOS devices; Neutron detectors; Particle beams; Photons; Pixels; Silicon wafers; Small satellites; Space optics; Spectrometers; X rays; Parker Engineering

Protecting flight hardware during spacecraft vibration testing through greater understanding of the CONTRL systems ability to control input and limit responses

Spacecraft level vibration testing exposes the as-built spacecraft, in its flight configuration, to the low frequency (<100 Hz) dynamic environment experienced during launch with the primary objective of verifying structural integrity and system performance. This test requires as flight-like of a configuration as possible and is therefore typically one of the last tests performed in the spacecraft verification program. At this level of integration (spacecraft), failures pose a much greater risk to the program than at lower l ...

Conkey, Shelly; Schaefer, Ed; Persons, David;

Published by: 30th Space Simulation Conference: Mission Success Through Testing of Critical Challenges      Published on:

YEAR: 2018     DOI:

Ability testing; Environmental testing; Software testing; Spacecraft; Vibration analysis; Vibration control; Parker Engineering

The Use of the Expanded FMEA in Spacecraft Fault Management

The NASA/APL Parker Solar Probe (PSP) mission will revolutionize our understanding of the Sun by swooping to within 4 million miles of the Sun s surface. This mission targets the fundamental processes and dynamics that characterize the Sun s corona and outwardly expanding solar wind and will be the first mission to fly into the low solar corona (i.e., the Sun s atmosphere) revealing both how the corona is heated and how the solar wind is accelerated. PSP has many engineering challenges presented by the intense environment in ...

Jones, Melissa; Fretz, Kristin; Kubota, Sanae; Smith, Clayton;

Published by: Proceedings - Annual Reliability and Maintainability Symposium      Published on:

YEAR: 2018     DOI:

Failure modes; Fault detection; Human resource management; Maintainability; NASA; Risk analysis; Risk assessment; Safety factor; Solar radiation; Solar wind; Spacecraft; Parker Engineering

Optimal design of thermal protection considering the carbon foam morphology

High-porous open cell foams can be used as efficient thermal insulation in many high-temperature applications including hypersonic vehicles, re-entry spacecrafts, solar and planetary probes, whose structures and systems are exposed to extreme heat loads. The benefits of such materials include extremely low density, high temperature capability, sufficient strength at the operating temperatures and low thermal conductivity. For example, open-cell carbon foam filled with a carbon aerogel and coated with carbon/carbon or ceramic ...

Alifanov, Oleg; Nenarokomov, Aleksey; Salosina, Margarita;

Published by: Proceedings of the International Astronautical Congress, IAC      Published on:

YEAR: 2018     DOI:

Parker Engineering

An integrated quad-band RF front end for high-reliability small satellite missions

As ever-increasing demand for lower size, weight, and power (SWaP) and small satellite platforms continues, it drives development in all sectors, including high-reliability and deep-space technologies. In order to meet these demands, JHU/APL is working to evolve its flight-proven, low-SWaP Frontier Radio (FR) [1] system into even smaller, more efficient, and yet more powerful designs. The Frontier Radio has already successfully flown an S-band version on NASA s Van Allen Probes (VAP) mission, and an X/Ka-band version will la ...

Neill, Michael; Ramirez, Joshua;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2018     DOI:

APL (programming language); Earth (planet); NASA; Orbits; Probes; Space flight; Space platforms; Parker Engineering

The challenges of integrating the Parker Solar Probe Observatory

The Parker Solar Probe (PSP) explores the inner region of the Sun s heliosphere in great detail through in-situ and remote sensing observations of the magnetic field, plasma, and accelerated particles. PSP travels much closer to the Sun - 9.5 solar radii (RS) from solar center - than any other spacecraft to repeatedly obtain in-situ and remotely sensed coronal magnetic field and plasma observations in the region of the Sun that generates the solar wind and ultimately creates space weather. Due to the high energy requirements ...

Cole, Timothy;

Published by: Proceedings of the International Astronautical Congress, IAC      Published on:

YEAR: 2018     DOI:

Parker Engineering

Thermal design verification testing of the solar array cooling system for Parker solar probe

Parker Solar Probe (PSP) will explore the inner region of the heliosphere through in situ and remote sensing observations of the magnetic field, plasma, and accelerated particles. PSP will travel closer to the sun (9.86 solar radii [(RS)]) than any previous spacecraft in order to obtain repeated coronal magnetic field and plasma measurements in the region of the sun that generates the solar wind. The baseline mission will entail 7 years from launch in 2018 until the completion of the 24th orbit; if delays necessit ...

Ercol, Carl; Abel, Elisabeth; Holtzman, Allan; Wallis, Eric;

Published by: 30th Space Simulation Conference: Mission Success Through Testing of Critical Challenges      Published on:

YEAR: 2018     DOI:

Cooling systems; magnetic fields; Magnetoplasma; Orbits; Probes; Remote sensing; Solar cell arrays; Space flight; Thermoelectric equipment; Parker Engineering

Orbit determination covariance analyses for the parker solar probe mission

This paper details pre-launch navigation covariance analyses for the Parker Solar Probe mission. Baseline models and error assumptions are outlined. The results demonstrate how navigation will satisfy requirements and are used to define operational plans. A few sensitivities are identified and the accompanying investigations are described. Predicted state uncertainty results show that most requirements are met with substantial margin. Moreover, navigation sensitivities may be accommodated operationally and this has been inco ...

Jones, Drew; Thompson, Paul; Valerino, Powtawche; Lau, Eunice; Goodson, Troy; Chung, Min-Kun; Mottinger, Neil;

Published by: Advances in the Astronautical Sciences      Published on:

YEAR: 2018     DOI:

Astrophysics; Probes; Parker Engineering

Parker solar probe navigation: One year from launch

Parker Solar Probe (PSP) will be the first spacecraft designed to fly deep within the Sun’s lower corona and also becoming the fastest spacecraft flown. Launch is scheduled for next year, with a 20-day launch period beginning on 31 July 2018. PSP will be on a ballistic trajectory, requiring seven Venus flybys to progressively lower the perihelion over the seven-year mission. This near-solar environment can be particularly challenging from a spacecraft design as well as a navigation perspective. We discuss an overview o ...

Thompson, Paul; Goodson, Troy; Chung, Min-Kun; Jones, Drew; Lau, Eunice; Mottinger, Neil; Valerino, Powtawche;

Published by: Advances in the Astronautical Sciences      Published on:

YEAR: 2018     DOI:

Astrophysics; Parker Engineering

Flight path control analysis for parker solar probe

An unprecedented NASA mission to study the Sun, known as Parker Solar Probe (PSP), is under development. The primary objective of the PSP mission is to gather new data within 10 solar radii of the Sun’s center. The purpose of this paper is to review the statistical analysis of trajectory correction maneuvers (TCMs) for PSP’s baseline trajectory. The baseline mission includes a total of 42 TCMs that will be accomplished with a monopropellant propulsion system that consists of twelve 4.4 N thrusters. Assuming curre ...

Valerino, Powtawche; Thompson, Paul; Jones, Drew; Goodson, Troy; Chung, Min-Kun; Mottinger, Neil;

Published by: Advances in the Astronautical Sciences      Published on:

YEAR: 2018     DOI:

Astrophysics; NASA; Probes; Propulsion; Statistical methods; Parker Engineering

Risk reduction of integration and testing operations using augmented reality on Parker solar probe

Flying a spacecraft involves significant risks, but building and testing should not have to. At the Johns Hopkins University Applied Physics Laboratory (JHU APL), the Parker Solar Probe (PSP) program has leveraged Augmented Reality (AR) to reduce risks involved with mechanical integration and testing (I&T) operations of the spacecraft. Three major contexts benefitted using AR tools: 1) design and rehearsal of integration sequences and procedures, 2) planning and preparing for flight system level testing, and 3) communication ...

Hahne, Devin; Ruiz, Felipe; DeMatt, Nicholas; Fagan, Adam;

Published by: 30th Space Simulation Conference: Mission Success Through Testing of Critical Challenges      Published on:

YEAR: 2018     DOI:

Augmented reality; Integration; Probes; Parker Engineering

Stray light analysis and testing of the SoloHI (solar orbiter heliospheric imager) and WISPR (wide field imager for solar probe) heliospheric imagers

The techniques for stray light analysis, optimization and testing are described for two space telescopes that observe the solar corona: the Solar Orbiter Heliospheric Imager (SoloHI) that will fly on the ESA Solar Orbiter (SolO), and the Wide Field Imager for Solar Probe (WISPR) that will fly on the NASA Parker Solar Probe (PSP) mission. Imaging the solar corona is challenging, because the corona is six orders of magnitude dimmer than the Sun surface at the limb, and the coronal brightness continues to decrease to ten orders ...

Thernisien, Arnaud; Howard, Russell; Korendyke, Clarence; Carter, Tim; Chua, Damien; Plunkett, Simon;

Published by: Proceedings of SPIE - The International Society for Optical Engineering      Published on:

YEAR: 2018     DOI:

Diffraction; Heat shielding; Image analysis; Millimeter waves; NASA; Optical coatings; Orbits; Probes; Ray tracing; Solar cell arrays; Solar radiation; Space flight; Space telescopes; Spacecraft; Parker Engineering

2017

Navigating an earned value management validation led by NASA: A contractor s perspective and helpful hints

In 2012, The Johns Hopkins Applied Physics Laboratory (APL) was approved by the National Aeronautics and Space Administration (NASA) to move forward with Phase B of the Solar Probe Plus (SPP) Mission to design and build the first spacecraft to fly into the Sun s outer atmosphere and study its effects on planetary systems and human activities. While APL had successfully utilized its earned value management system (EVMS) on the Van Allen Probes mission, the SPP contract called for a "certified" EVMS, which required an in-depth ...

Liggett, William; Hunter, Howard; Jones, Matthew;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2017     DOI:

Budget control; Compliance control; Contractors; Human resource management; Man machine systems; NASA; Network security; Personnel training; Probes; Project management; Space flight; Value engineering; Parker Engineering

Interplanetary dust particle shielding capability of blanketed spacecraft honeycomb structure

To assure mission success of the Solar Probe Plus (SPP) spacecraft, defined by achieving its final mission orbit with a perihelion distance of less than 10 solar radii, it is necessary to define the dust hypervelocity impact (HVI) protection levels provided by its Multi-Layer Insulation (MLI)/thermal blankets with a reliability that is on par with that available for metallic Whipple shields. Recently, we presented an experimentally validated approach being developed at the Johns Hopkins University Applied Physics Laboratory ...

Iyer, Kaushik; Mehoke, Douglas; Batra, Romesh;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2017     DOI:

Aerospace vehicles; Aluminum; Ballistics; Coremaking; Dust; Honeycomb structures; Interplanetary flight; Orbits; Particle size; Particle size analysis; Sandwich structures; Sensitivity analysis; Shielding; Parker Engineering

Stray light testing of WISPR baffle development model

Solar Probe Plus (SPP) is a NASA mission developed to visit and study the sun closer than ever before. SPP is designed to orbit as close as 7 million km (9.86 solar radii) from Sun center. One of its instruments: WISPR (Wide-Field Imager for Solar Probe Plus) will be the first local imager to provide the relation between the large-scale corona and the in-situ measurements.
© 2017 SPIE.

Hellin, M.-L.; Mazy, E.; Marcotte, S.; Stockman, Y.; Korendyke, C.; Thernisien, A.;

Published by: Proceedings of SPIE - The International Society for Optical Engineering      Published on:

YEAR: 2017     DOI:

NASA; Probes; Parker Engineering

Spacecraft power distribution unit test system re-use: Advantages, pitfalls and challenges

The Solar Probe Plus (SPP) mission, part of NASA s Living With a Star program, is set to launch in July of 2018 on a trip to travel through the Sun s corona. The first component that will be integrated to the spacecraft is the Power Distribution Unit (PDU). The SPP PDU was based on the PDU design utilized for the Van Allen Probes (formerly Radiation Belt Storm Probes) mission, but with some very significant differences. Due to the fact that the SPP spacecraft is a much more complex vehicle, it requires nearly twice as many p ...

Bucior, Sarah; Segal, Lisa;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2017     DOI:

Commercial off-the-shelf; NASA; Probes; Radiation belts; Spacecraft; Telemetering equipment; Testing; Parker Engineering

Agile methodology for spacecraft ground software development: A cultural shift

In the Space Exploration Sector (SES) at Johns Hopkins University Applied Physics Laboratory (JHU/APL) the development of Mission Operations Ground Software (GSW) to support NASA and Department of Defense spacecraft missions has traditionally followed the incremental build methodology. As part of our continuous process improvement effort, the Agile methodology is being introduced as an alternative approach to software development. To meet the needs of sponsor requirements and satisfy our quality management processes a tailor ...

Wortman, Kristin; Duncan, Brian; Melin, Eric;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2017     DOI:

Computer software; NASA; Quality management; Space flight; Spacecraft; Parker Engineering

The radio frequency telecommunications system for the NASA Europa clipper mission

The NASA Europa Clipper mission, a partnership between the California Institute of Technology Jet Propulsion Laboratory (JPL) and the Johns Hopkins University Applied Physics Laboratory (APL), is currently in Phase B and scheduled for launch in 2022. A Jupiter orbiter, it will perform repeated flybys of the moon, Europa, to assess the icy moon’s structure and habitability. The spacecraft’s dual X/Ka-band radio frequency telecommunications subsystem has five primary functions: Provide spacecraft command capability ...

Srinivasan, Dipak; Angert, Matthew; Ballarotto, Mihaela; Berman, Simmie; Bray, Matthew; Garvey, Robert; Hahne, Devin; Haskins, Chris; Porter, Jamie; Schulze, Ron; Scott, Chris; Sharma, Avinash; Sheldon, Colin;

Published by: Proceedings of the International Astronautical Congress, IAC      Published on:

YEAR: 2017     DOI:

Data handling; Earth (planet); Microwave antennas; NASA; Orbits; Propulsion; Radio navigation; Radio waves; Space flight; Telecommunication; Traveling wave tubes; Parker Engineering

Initial attitude control challenges for the solar probe plus spacecraft

The Solar Probe Plus (SPP) mission plans to launch a spacecraft to explore the Sun in 2018. Attitude control is maintained with a 3-axis stabilized, closed-loop control system. One of the first tasks for this system is acquiring attitude knowledge and establishing attitude control after separation from the launch vehicle. Once control is established, the spacecraft must be moved through a sequence of attitudes to meet power and thermal constraints and reach a powerpositive state. This paper describes the options selected for ...

Vaughan, Robin; Shaughnessy, Daniel; Wirzburger, John;

Published by: Advances in the Astronautical Sciences      Published on:

YEAR: 2017     DOI:

Attitude control; Flight control systems; Probes; Space flight; Parker Engineering

Sun direction determination for the solar probe plus spacecraft

The Solar Probe Plus (SPP) mission plans to launch a spacecraft to explore the Sun in 2018. This paper presents the process applied in the attitude control flight software for the spacecraft to determine the best Sun direction from Sun sensor data or a vector derived from on-board ephemeris models and the estimated attitude. Self-consistency checks applied to determine validity of these different knowledge sources are explained, with emphasis on processing of solar limb sensor data. Consistency checks between the available d ...

Vaughan, Robin; Wirzburger, John; McGee, Timothy; Shapiro, Hongxing; Shaughnessy, Daniel;

Published by: Advances in the Astronautical Sciences      Published on:

YEAR: 2017     DOI:

Attitude control; Probes; Parker Engineering

Full wing qualification testing and incremental program update for the solar probe plus array

As the Solar Probe Plus (SPP) program moves into the flight hardware build phase, the final testing of the qualification panel has been completed. The rigorous testing is many orders of magnitude more intensive than that used for standard earth-orbit missions. Testing under high irradiance, high temperature conditions over large areas poses design and logistic challenges, which have spurred innovation in steady state illumination. New test hardware of interest include a large area LED simulator capable of 6X AM0 string curre ...

Gerger, Andrew; Stall, Richard; Schurman, Matthew; Sharps, Paul; Sulyma, Christopher; De Zetter, Karen; Johnson, Paul; Mitchell, Richard; Guevara, Roland; Crist, Kevin; Cisneros, Larry; Sarver, Charles;

Published by: 2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017      Published on:

YEAR: 2017     DOI:

Degassing; Heliostats (instruments); Light emitting diodes; Orbits; Probes; Silicones; Solar cell arrays; Wings; Parker Engineering

Full scale thermal simulator development for the solar probe plus thermal protection system

Solar Probe Plus (SPP) is a NASA mission that will go within ten Solar Radii of the sun. One of the crucial technologies in this system is the Thermal Protection System (TPS), which shields the spacecraft from the sun. The TPS is made up of carbon-foam sandwiched between two carbon-carbon panels, and is approximately eight feet in diameter and 4.5 inches thick. At its closest approach, the front surface of the TPS is expected to reach 1200°C, but the foam will dissipate the heat so the back surface will only be about 300 ...

Heisler, Elizabeth; Abel, Elisabeth; Congdon, Elizabeth; Eby, Daniel;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2017     DOI:

Aluminum coated steel; Carbon; Foams; Heat shielding; NASA; Probes; Simulators; Space flight; Stainless steel; Thermal insulating materials; Thermoanalysis; Vacuum technology; Parker Engineering

Flight software verification methods in frontier radio for solar probe plus mission

Success of deep space missions requires comprehensive performance verification for all hardware and software systems on the spacecraft over a broad scope of conditions and configurations, including the telecommunications subsystem. NASA Solar Probe Plus mission uses a software-defined radio for its telecommunications; thus a dedicated suite of tests are required for verification of the radio software in addition to traditional hardware verification procedures. Frontier Radio, developed by Johns Hopkins University Applied Phy ...

Kufahl, Katelyn; Wortman, Kristin; Burke, Linda; Hennawy, Joseph; Adams, Norman; Sheehi, Joseph;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2017     DOI:

Computer software selection and evaluation; Digital radio; Digital signal processing; Instrument testing; Interplanetary flight; NASA; Probes; radio receivers; Software radio; Verification; Parker Engineering

Advancements in hardware design for the frontier radio used for the solar probe plus mission

The Frontier Radio for the Solar Probe Plus mission offers a host of hardware design and manufacturing improvements. These improvements build on the technology readiness level (TRL)-9 radio platform that was flown on the Van Allen Probes mission in a duplexed S-band configuration and several development tasks funded by NASA Headquarters. Prior RF slice designs consisted of two separate circuit boards: one for lower frequencies and one for high-frequencies; advances in technology enabled the use of a high-frequency multilayer ...

Angert, Matthew; Bubnash, Brian; Hearty, Ryan; Neill, Michael; Ling, Sharon; Matlin, Daniel; Cheng, Sheng;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2017     DOI:

Digital signal processing; Field programmable gate arrays (FPGA); Integrated circuit design; Interplanetary flight; Magnesium alloys; Manufacture; NASA; Probes; Random access storage; Parker Engineering

Capabilities and performance of the high-energy energetic-particles instrument for the parker solar probe mission

NASA s Parker Solar Probe (PSP) spacecraft (formerly Solar Probe Plus) is scheduled for launch in July 2018 with a planned heliocentric orbit that will carry it on a series of close passes by the Sun with perihelion distances that eventually will get below 10 solar radii. Among other in-situ and imaging sensors, the PSP payload includes the two-instrument "Integrated Science Investigation of the Sun" suite, which will make coordinated measurements of energetic ions and electrons. The high-energy instrument (EPI-Hi), operatin ...

Wiedenbeck, M.E.; Angold, N.G.; Birdwell, B.; Burnham, J.A.; Christian, E.R.; Cohen, C.M.S.; Cook, W.R.; Crabill, R.M.; Cummings, A.C.; Davis, A.J.; Dirks, G.; Do, D.H.; Everett, D.T.; Goodwin, P.A.; Hanley, J.J.; Hernandez, L.; Kecman, B.; Klemic, J.; Labrador, A.W.; Leske, R.A.; Lopez, S.; Link, J.T.; McComas, D.J.; Mewaldt, R.A.; Miyasaka, H.; Nahory, B.W.; Rankin, J.S.; Riggans, G.; Rodriguez, B.; Rusert, M.D.; Shuman, S.A.; Simms, K.M.; Stone, E.C.; Von Rosenvinge, T.T.; Weidner, S.E.; White, M.L.;

Published by: Proceedings of Science      Published on:

YEAR: 2017     DOI:

cosmic rays; Cosmology; NASA; Orbits; Probes; Radioactivity; Parker Engineering

Development of a flight qualified ka-band multi-chip module for the solar probe plus mission

The Johns Hopkins University Applied Physics Lab (JHU/APL) has developed a flight qualified, hermetically sealed, I/Q modulator Ka-band Multi-chip Module (MCM). Prototypes of this device have been developed over the years, but Solar Probe Plus (SPP) will be the first mission to use a flight qualified version of the MCM. This MCM enables a first for a deep-space mission: primary science data downlink with simultaneous data and navigation over Ka-band. SPP will also be the first JHU/APL mission to use Ka-band for downlink. The ...

Matlin, Daniel; Sharma, Avinash; Angert, Matthew; Cheng, Sheng; Lehtonen, John;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2017     DOI:

Commercial off-the-shelf; Electronic equipment testing; Gallium arsenide; III-V semiconductors; Interplanetary flight; Monolithic microwave integrated circuits; NASA; Probes; Parker Engineering

2016

A theoretical analysis of Ka-band turnaround noise in radios used for deep space comm/Nav

Deep-space missions typically use a radio link between the Deep Space Network (DSN) ground stations and the spacecraft to transmit telemetry data and to generate the range and Doppler shift measurements that enable precise navigation. The amount of carrier phase noise present in this radio link is an important metric of performance, and radios are often designed to minimize the impact of this noise. From a communication perspective, more noise causes an increase in the system s frame-error rate, and from a navigation perspec ...

Duven, Dennis; Jensen, Bob; Mitch, Ryan; Kinman, Peter;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2016     DOI:

Doppler effect; Errors; Interplanetary flight; NASA; Phase noise; Radio links; Scintillation; thermal noise; Parker Engineering

From prototype technology to flight: Infusing the Frontier Radio into space missions

New technologies are constantly being developed at many space-related institutions. A significant challenge is to not only propose and develop these new technologies, but to infuse them into real space missions. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) has a successful history of infusing such new technologies into NASA flight programs, including non-coherent navigation in the CONTOUR mission (launched 2002), a circularly-polarized phased-array antenna on the MESSENGER mission (2004), and a low-power ...

Srinivasan, Dipak; Haskins, Christopher;

Published by: Proceedings of the International Astronautical Congress, IAC      Published on:

YEAR: 2016     DOI:

Parker Engineering

Antenna scattering measurements using a scaled 3-D printed spacecraft model

A method to measure an antenna s performance when mounted to an electrically large and complex-shaped spacecraft is described. In the past, either time-intensive numerical simulations or antenna range measurements of an expensive full-scale model of the spacecraft were used to determine the antenna s performance. An alternative method fabricated a reduced-size scaled spacecraft model using 3-D printing processes. The antenna is also reduced in size by the same scale factor as the spacecraft, but the frequency of operation is ...

Sharma, Avinash; Hahne, Devin; Stilwell, Robert; Malouf, Perry;

Published by: 2016 IEEE Antennas and Propagation Society International Symposium, APSURSI 2016 - Proceedings      Published on:

YEAR: 2016     DOI:

Parker Engineering

Enabling coherent Ka-band downlink with a software-defined radio

The migration to Ka-band for science downlink on deep space missions increases data rates significantly, but also presents new challenges to radio and RF system designers. One challenge is to maintain low carrier phase noise on a coherent downlink. Thermal noise on the X-band uplink that is within the bandwidth of the carrier recovery process modulates the phase of the coherent downlink. For missions that use X-band for command uplink and Ka-band for science downlink, such as the NASA Solar Probe Plus mission, the ratio of d ...

Adams, Norman; Angert, Matthew; Copeland, David; Haskins, Christopher;

Published by: IEEE Aerospace Conference Proceedings      Published on:

YEAR: 2016     DOI:

Additive noise; Interplanetary flight; NASA; Radio navigation; Software radio; Parker Engineering

Reliable commanding and telemetry operations using CFDP

The Solar Probe Plus (SPP) mission to be launched in 2018 is designed to use CFDP (CCSDS File Delivery Protocol) Class 2 Reliable Transfer in the majority of spacecraft commanding as well as for playback of recorded telemetry. A prioritized SSR telemetry playback interface using CFDP was developed on MESSENGER and Van Allen Probes and will be reused on SPP. Similar to MESSENGER, telemetry files of instrument data will be provided directly to the appropriate Science Operations Center (SOC) and not processed by the Mission Ope ...

Melin, Eric; Krupiarz, Christopher; Monaco, Christopher; Pinkine, Nickalaus; Harrington-Duff, Patricia;

Published by: 14th International Conference on Space Operations, 2016      Published on:

YEAR: 2016     DOI:

Probes; System-on-chip; Parker Engineering

Development of the solar probe plus spacecraft thermal protection system (TPS) thermal simulator-subscale testing

The NASA’s Solar Probe Plus spacecraft must endure extreme heat loads while passing near the Sun. Due to its high incident heatload and temperature, the spacecraft Thermal Protection System (TPS) must be simulated using a custom thermal simulator during spacecraft thermal vacuum testing. As part of the development of the TPS thermal simulator, subscale testing was performed. The design, testing, results and lessons learned are described in this paper. Especially useful are the design aspects needed to achieve the high ...

Congdon, Elizabeth; Abel, Elisabeth; Heisler, Elizabeth;

Published by: 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference      Published on:

YEAR: 2016     DOI:

Aerodynamics; Heat shielding; NASA; Probes; Simulators; Spacecraft; Thermal insulating materials; Parker Engineering

Solar probe plus: Unique navigation modeling challenges

The Solar Probe Plus (SPP) mission is preparing to launch in 2018, and will directly investigate the outer atmosphere of our star. At 9. 86 solar radii, SPP must operate in an unexplored regime. The environment and aspects of the mission design present some unique challenges for navigation, particularly in terms of modeling the dynamics. Non-gravitational force models, unique to this mission, are given with analytical expressions. For each of these models (and error sources), a maximum bound on the force perturbation magnitu ...

Jones, Drew; Goodson, Troy; Thompson, Paul; Valerino, Powtawche; Williams, Jessica;

Published by: AIAA/AAS Astrodynamics Specialist Conference, 2016      Published on:

YEAR: 2016     DOI:

Astrophysics; Charged particles; Probes; Parker Engineering

Full wing qualification testing and incremental program update for the solar probe plus array

As the Solar Probe Plus (SPP) program moves into the flight hardware build phase, the final testing of the qualification panel has been completed. The rigorous testing is many orders of magnitude more intensive than that used for standard earth-orbit missions. Testing under high irradiance, high temperature conditions over large areas poses design and logistic challenges, which have spurred innovation in steady state illumination. New test hardware of interest include a large area LED simulator capable of 6X AM0 string curre ...

Gerger, Andrew; Stall, Richard; Schurman, Matthew; Sharps, Paul; Sulyma, Christopher; De Zetter, Karen; Johnson, Paul; Mitchell, Richard; Guevara, Roland; Crist, Kevin; Cisneros, Larry; Sarver, Charles;

Published by: Conference Record of the IEEE Photovoltaic Specialists Conference      Published on:

YEAR: 2016     DOI:

Degassing; Heliostats (instruments); Light emitting diodes; Orbits; Probes; Silicones; Solar cell arrays; Wings; Parker Engineering

Solar probe plus (SPP) power system electronics

The Solar Probe Plus mission, under NASA’s Living With a Star Program, will fly a spacecraft (S/C) through the sun’s outer corona with orbit perihelia that gradually approach as close as 9.86 solar radii from the center of the sun. The mission will gather data on the processes of coronal heating, solar wind acceleration and production, and evolution and transport of solar energetic particles. The S/C is powered by two actively cooled photovoltaic solar array (S/A) wings. A novel power system electronics (PSE) box ...

Baisden, Carson; Frankford, David;

Published by: 14th International Energy Conversion Engineering Conference, 2016      Published on:

YEAR: 2016     DOI:

Digital control systems; Electric power transmission; NASA; Orbits; Probes; Solar cell arrays; Space flight; Parker Engineering



  1      2