PSP Bibliography


  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 838 entries in the Bibliography.

Showing entries from 1 through 50


On the utility of flux rope models for CME magnetic structure below 30 R$_\ensuremath\odot$

We present a comprehensive analysis of the three-dimensional magnetic flux rope structure generated during the Lynch et al. (2019, ApJ 880:97) magnetohydrodynamic (MHD) simulation of a global-scale, 360 \textdegree -wide streamer blowout coronal mass ejection (CME) eruption. We create both fixed and moving synthetic spacecraft to generate time series of the MHD variables through different regions of the flux rope CME. Our moving spacecraft trajectories are derived from the spatial coordinates of Parker Solar Probe s past enc ...

Lynch, Benjamin; Al-Haddad, Nada; Yu, Wenyuan; Palmerio, Erika; Lugaz, No\;

Published by: Advances in Space Research      Published on: sep

YEAR: 2022     DOI: 10.1016/j.asr.2022.05.004

Parker Data Used; magnetohydrodynamics (MHD); Solar corona; Coronal mass ejection (CME); magnetic flux rope; Parker Solar Probe (PSP); Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Extracting the Heliographic Coordinates of Coronal Rays Using Images from WISPR/Parker Solar Probe

The Wide-field Imager for Solar Probe (WISPR) onboard Parker Solar Probe (PSP), observing in white light, has a fixed angular field of view, extending from 13.5$^\ensuremath\circ$ to 108$^\ensuremath\circ$ from the Sun and approximately 50$^\ensuremath\circ$ in the transverse direction. In January 2021, on its seventh orbit, PSP crossed the heliospheric current sheet (HCS) near perihelion at a distance of 20 solar radii. At this time, WISPR observed a broad band of highly variable solar wind and multiple coronal rays. For si ...

Liewer, P.~C.; Qiu, J.; Ark, F.; Penteado, P.; Stenborg, G.; Vourlidas, A.; Hall, J.~R.; Riley, P.;

Published by: \solphys      Published on: sep

YEAR: 2022     DOI: 10.1007/s11207-022-02058-6

Parker Data Used; Corona; Coronal streamers; Coronal rays; Astrophysics - Solar and Stellar Astrophysics

Multispacecraft Remote Sensing and In Situ Observations of the 2020 November 29 Coronal Mass Ejection and Associated Shock: From Solar Source to Heliospheric Impacts

We investigate the source eruption, propagation and expansion characteristics, and heliospheric impacts of the 2020 November 29 coronal mass ejection (CME) and associated shock, using remote sensing and in situ observations from multiple spacecraft. A potential-field source-surface model is employed to examine the coronal magnetic fields surrounding the source region. The CME and associated shock are tracked from the early stage to the outer corona using extreme ultraviolet and white light observations. Forward models are ap ...

Chen, Chong; Liu, Ying; Zhu, Bei;

Published by: \apj      Published on: sep

YEAR: 2022     DOI: 10.3847/1538-4357/ac7ff6

Parker Data Used; Interplanetary shocks; Solar wind; Solar coronal mass ejections; 829; 1534; 310; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Observation of a Magnetic Switchback in the Solar Corona

Switchbacks are sudden, large radial deflections of the solar wind magnetic field, widely revealed in interplanetary space by the Parker Solar Probe. The switchbacks formation mechanism and sources are still unresolved, although candidate mechanisms include Alfv\ enic turbulence, shear-driven Kelvin-Helmholtz instabilities, interchange reconnection, and geometrical effects related to the Parker spiral. This Letter presents observations from the Metis coronagraph on board a Solar Orbiter of a single large propagating S-shape ...

Telloni, Daniele; Zank, Gary; Stangalini, Marco; Downs, Cooper; Liang, Haoming; Nakanotani, Masaru; Andretta, Vincenzo; Antonucci, Ester; Sorriso-Valvo, Luca; Adhikari, Laxman; Zhao, Lingling; Marino, Raffaele; Susino, Roberto; Grimani, Catia; Fabi, Michele; Amicis, Raffaella; Perrone, Denise; Bruno, Roberto; Carbone, Francesco; Mancuso, Salvatore; Romoli, Marco; Da Deppo, Vania; Fineschi, Silvano; Heinzel, Petr; Moses, John; Naletto, Giampiero; Nicolini, Gianalfredo; Spadaro, Daniele; Teriaca, Luca; Frassati, Federica; Jerse, Giovanna; Landini, Federico; Pancrazzi, Maurizio; Russano, Giuliana; Sasso, Clementina; Biondo, Ruggero; Burtovoi, Aleksandr; Capuano, Giuseppe; Casini, Chiara; Casti, Marta; Chioetto, Paolo; De Leo, Yara; Giarrusso, Marina; Liberatore, Alessandro; Berghmans, David; Auchère, Fr\; Cuadrado, Regina; Chitta, Lakshmi; Harra, Louise; Kraaikamp, Emil; Long, David; Mandal, Sudip; Parenti, Susanna; Pelouze, Gabriel; Peter, Hardi; Rodriguez, Luciano; Schühle, Udo; Schwanitz, Conrad; Smith, Phil; Verbeeck, Cis; Zhukov, Andrei;

Published by: \apjl      Published on: sep

YEAR: 2022     DOI: 10.3847/2041-8213/ac8104

Parker Data Used; Solar corona; Solar magnetic reconnection; Solar magnetic fields; Magnetohydrodynamics; Solar Coronal Waves; Slow solar wind; 1483; 1504; 1503; 1964; 1995; 1873; Astrophysics - Solar and Stellar Astrophysics

Evidence that Interaction with the Spacecraft Plasma Wake Generates Plasma Waves Close to the Electron Cyclotron Frequency in the Near-Sun Solar Wind

Prior observations of the near-Sun solar wind (sunward of 0.25 au) identified frequent, intense plasma waves near the local electron cyclotron frequency (f $_ce$), and its harmonics. In this Letter, it is shown that near-f $_ce$ wave properties are consistent with generation via interaction between the observing spacecraft s ion wake and the ambient plasma and magnetic fields. This result implies that many observed near-f $_ce$ waves are not intrinsic to the unobstructed solar wind flow, and therefore are unlikely to play a ...

Malaspina, David; Tigik, Sabrina; Vaivads, Andris;

Published by: \apjl      Published on: sep

YEAR: 2022     DOI: 10.3847/2041-8213/ac8c8f

Parker Data Used; Solar wind; space vehicles; Space plasmas; 1534; 1549; 1544

Switchbacks in the Young Solar Wind: Electron Evolution Observed inside Switchbacks between 0.125 au and 0.25 au

Switchbacks are localized deviations from the nominal Parker spiral field in the solar wind. In this study, we investigate the electron distributions inside switchbacks, focusing primarily on the suprathermal (halo and strahl) populations. We explore electron parameters in relation to the angle of rotation of the magnetic field from radial to determine whether electron distributions observed within switchbacks have any differences from those outside of switchbacks. Our observations reveal several trends in the suprathermal e ...

Nair, Raaman; Halekas, Jasper; Whittlesey, Phyllis; Larson, Davin; Livi, Roberto; Berthomier, Matthieu; Kasper, Justin; Case, Anthony; Stevens, Michael; Bale, Stuart; MacDowall, Robert; Pulupa, Marc;

Published by: \apj      Published on: sep

YEAR: 2022     DOI: 10.3847/1538-4357/ac88c4

Parker Data Used; Solar wind; Space plasmas; Solar corona; Solar magnetic fields; Solar Physics; 1534; 1544; 1483; 1503; 1476

Inhomogeneous Kinetic Alfv\ en Waves in the Near-Sun Solar Wind

Intervals of intense electromagnetic, broadband plasma waves are reported in the near-Sun solar wind. These waves are identified as kinetic Alfv\ en waves (KAWs), based on comparison between data and theory for their observed electric- to magnetic-field ratio, and magnetic compressibility, as a function of frequency. In contrast to KAW observations at 1 au, KAWs in the near-Sun solar wind are found to be spatially inhomogeneous, preferentially occurring where the ambient magnetic field experiences strong deviations from the ...

Malaspina, David; Chasapis, Alexandros; Tatum, Peter; Salem, Chadi; Bale, Stuart; Bonnell, John; de Wit, Thierry; Goetz, Keith; Pulupa, Marc; Halekas, Jasper; Whittlesey, Phyllis; Livi, Roberto; Case, Anthony; Stevens, Michael; Larson, Davin;

Published by: \apj      Published on: sep

YEAR: 2022     DOI: 10.3847/1538-4357/ac87a7

Parker Data Used; Solar wind; Alfven waves; interplanetary turbulence; Space plasmas; Solar magnetic fields; 1534; 23; 830; 1544; 1503

Continued PSP/WISPR Observations of a Phaethon-related Dust Trail

We present an update to the first white-light detections of a dust trail observed closely following the orbit of asteroid (3200) Phaethon, as seen by the Wide-field Imager for the Parker Solar Probe instrument on the NASA Parker Solar Probe mission. Here, we provide a summary and analysis of observations of the dust trail over nine separate mission encounters between 2018 October and 2021 August that saw the spacecraft approach to within 0.0277 au of the orbit of Phaethon. We find the photometric and estimated dust mass prop ...

Battams, Karl; Gutarra-Leon, Angel; Gallagher, Brendan; Knight, Matthew; Stenborg, Guillermo; Tanner, Sarah; Linton, Mark; Szalay, Jamey; Kelley, Michael; Howard, Russell;

Published by: \apj      Published on: sep

YEAR: 2022     DOI: 10.3847/1538-4357/ac83b5

Parker Data Used; Asteroids; Meteoroid dust clouds; Near-Earth objects; Small Solar System bodies; 72; 1039; 1092; 1469; Astrophysics - Earth and Planetary Astrophysics

The Radial Evolution of the Solar Wind as Organized by Electron Distribution Parameters

We utilize observations from the Parker Solar Probe (PSP) to study the radial evolution of the solar wind in the inner heliosphere. We analyze electron velocity distribution functions observed by the Solar Wind Electrons, Alphas, and Protons suite to estimate the coronal electron temperature and the local electric potential in the solar wind. From the latter value and the local flow speed, we compute the asymptotic solar wind speed. We group the PSP observations by asymptotic speed, and characterize the radial evolution of t ...

Halekas, J.~S.; Whittlesey, P.; Larson, D.~E.; Maksimovic, M.; Livi, R.; Berthomier, M.; Kasper, J.~C.; Case, A.~W.; Stevens, M.~L.; Bale, S.~D.; MacDowall, R.~J.; Pulupa, M.~P.;

Published by: \apj      Published on: sep

YEAR: 2022     DOI: 10.3847/1538-4357/ac85b8

Parker Data Used; Solar wind; Slow solar wind; Fast solar wind; 1534; 1873; 1872; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Overview of the Remote Sensing Observations from PSP Solar Encounter 10 with Perihelion at 13.3 R $_\ensuremath\odot$

The closest perihelion pass of Parker Solar Probe (PSP), so far, occurred between 2021 November 16 and 26 and reached \raisebox-0.5ex\textasciitilde13.29 R $_☉$ from Sun center. This pass resulted in very unique observations of the solar corona by the Wide-field Instrument for Solar PRobe (WISPR). WISPR observed at least 10 coronal mass ejections (CMEs), some of which were so close that the structures appear distorted. All of the CMEs appeared to have a magnetic flux rope (MFR) structure, and most were oriented such that t ...

Howard, Russell; Stenborg, Guillermo; Vourlidas, Angelos; Gallagher, Brendan; Linton, Mark; Hess, Phillip; Rich, Nathan; Liewer, Paulett;

Published by: \apj      Published on: sep

YEAR: 2022     DOI: 10.3847/1538-4357/ac7ff5

Parker Data Used; Solar coronal mass ejections; Solar wind; Solar K corona; Solar coronal streamers; 310; 1534; 2042; 1486; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics

Characteristics and evolution of sheath and leading edge structures of interplanetary coronal mass ejections in the inner heliosphere based on Helios and Parker Solar Probe observations

Context. We investigated the plasma and magnetic field characteristics of the upstream regions of interplanetary coronal mass ejections (ICMEs) and their evolution as function of distance to the Sun in the inner heliosphere. Results are related both to the development of interplanetary shocks, sheath regions, and compressed solar wind plasma ahead of the magnetic ejecta (ME). \ Aims: From a sample of 45 ICMEs observed by Helios 1/2 and the Parker Solar Probe, we aim to identify four main density structures; namely shock, she ...

Temmer, M.; Bothmer, V.;

Published by: \aap      Published on: sep

YEAR: 2022     DOI: 10.1051/0004-6361/202243291

Parker Data Used; Sun: coronal mass ejections (CMEs); Sun: heliosphere; solar-terrestrial relations; Solar wind; Sun: activity; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics; Physics - Space Physics

Observations of the Solar F-Corona from Space

Lamy, P.~L.; Gilardy, H.; Llebaria, A.;

Published by: ßr      Published on: sep

YEAR: 2022     DOI: 10.1007/s11214-022-00918-y

Parker Data Used; F-corona; Zodiacal light; Interplanetary dust; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics

Galactic Cosmic-Ray Propagation in the Inner Heliosphere: Improved Force-field Model

Li, Jung-Tsung; Beacom, John; Peter, Annika;

Published by: \apj      Published on: sep

YEAR: 2022     DOI: 10.3847/1538-4357/ac8cf3

Parker Data Used; cosmic rays; Galactic cosmic rays; Gamma-ray astronomy; Gamma-ray observatories; Magnetohydrodynamics; Plasma astrophysics; Particle astrophysics; High energy astrophysics; Solar Physics; interplanetary turbulence; 329; 567; 628; 632; 1964; 1261; 96; 739; 1476; 830; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics; Astrophysics - High Energy Astrophysical Phenomena; High Energy Physics - Phenomenology; Physics - Plasma Physics; Physics - Space Physics

Parker Solar Probe Observations of Near-f $_Ce$ Harmonic Emissions in the Near-Sun Solar Wind and Their Dependence on the Magnetic Field Direction

Wave emissions at frequencies near electron gyrofrequency harmonics are observed at small heliocentric distances below about 40 R $_\ensuremath\odot$ and are known to occur in regions with quiescent magnetic fields. We show the close connection of these waves to the large-scale properties of the magnetic field. Near electron gyrofrequency harmonic emissions occur only when the ambient magnetic field points to a narrow range of directions bounded by polar and azimuthal angular ranges in the RTN coordinate system of correspond ...

Tigik, Sabrina; Vaivads, Andris; Malaspina, David; Bale, Stuart;

Published by: \apj      Published on: sep

YEAR: 2022     DOI: 10.3847/1538-4357/ac8473

Parker Data Used; Space plasmas; Plasma physics; Solar wind; 1544; 2089; 1534; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

The heliospheric ambipolar potential inferred from sunward-propagating halo electrons

We provide evidence that the sunward-propagating half of the solar wind electron halo distribution evolves without scattering in the inner heliosphere. We assume the particles conserve their total energy and magnetic moment, and perform a Liouville mapping on electron pitch angle distributions measured by the Parker Solar Probe SPAN-E instrument. Namely, we show that the distributions are consistent with Liouville s theorem if an appropriate interplanetary potential is chosen. This potential, an outcome of our fitting meth ...

Horaites, Konstantinos; Boldyrev, Stanislav;

Published by: \mnras      Published on: oct

YEAR: 2022     DOI: 10.1093/mnras/stac2051

Parker Data Used; plasmas; Solar wind; Physics - Space Physics

Coronal Mass Ejection Deformation at 0.1 au Observed by WISPR

Although coronal mass ejections (CMEs) resembling flux ropes generally expand self-similarly, deformations along their fronts have been reported in observations and simulations. We present evidence of one CME becoming deformed after a period of self-similar expansion in the corona. The event was observed by multiple white-light imagers on 2021 January 20-22. The change in shape is evident in observations from the heliospheric imagers from the Wide-Field Imager for Solar Probe Plus (WISPR), which observed this CME for \raiseb ...

Braga, Carlos; Vourlidas, Angelos; Liewer, Paulett; Hess, Phillip; Stenborg, Guillermo; Riley, Pete;

Published by: \apj      Published on: oct

YEAR: 2022     DOI: 10.3847/1538-4357/ac90bf

Parker Data Used; Solar coronal mass ejections; 310; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Modeling of Joint Parker Solar Probe-Metis/Solar Orbiter Observations

We present the first theoretical modeling of joint Parker Solar Probe (PSP)-Metis/Solar Orbiter (SolO) quadrature observations. The combined observations describe the evolution of a slow solar wind plasma parcel from the extended solar corona (3.5-6.3 R $_\ensuremath\odot$) to the very inner heliosphere (23.2 R $_\ensuremath\odot$). The Metis/SolO instrument remotely measures the solar wind speed finding a range from 96 to 201 km s$^-1$, and PSP measures the solar wind plasma in situ, observing a radial speed of 219.34 km s$ ...

Adhikari, L.; Zank, G.~P.; Telloni, D.; Zhao, L.;

Published by: \apjl      Published on: oct

YEAR: 2022     DOI: 10.3847/2041-8213/ac91c6

Parker Data Used; The Sun; Solar wind; interplanetary turbulence; 1693; 1534; 830; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Strategies for Determining the Cascade Rate in MHD Turbulence: Isotropy, Anisotropy, and Spacecraft Sampling

Exact laws for evaluating cascade rates, tracing back to the Kolmogorov 4/5 law, have been extended to many systems of interest including magnetohydrodynamics (MHD), and compressible flows of the magnetofluid and ordinary fluid types. It is understood that implementations may be limited by the quantity of available data and by the lack of turbulence symmetry. Assessment of the accuracy and feasibility of such third-order (or Yaglom) relations is most effectively accomplished by examining the von K\ arm\ an-Howarth equati ...

Wang, Yanwen; Chhiber, Rohit; Adhikari, Subash; Yang, Yan; Bandyopadhyay, Riddhi; Shay, Michael; Oughton, Sean; Matthaeus, William; Cuesta, Manuel;

Published by: \apj      Published on: oct

YEAR: 2022     DOI: 10.3847/1538-4357/ac8f90

Parker Data Used; interplanetary turbulence; Space plasmas; Plasma physics; Magnetohydrodynamics; Magnetohydrodynamical simulations; 830; 1544; 2089; 1964; 1966; Physics - Space Physics; Physics - Fluid Dynamics; Physics - Plasma Physics

Higher-order Turbulence Statistics in the Sub-Alfv\ enic Solar Wind Observed by Parker Solar Probe

Parker Solar Probe has been the first spacecraft to enter the deep corona below the Alfv\ en critical point. Here we examine the higher-order statistical properties of magnetic-field fluctuations in the sub-Alfv\ enic solar wind and compare the results with the neighboring super-Alfv\ enic region. The intermittency and multifractal properties are analyzed by inspecting the probability density functions, the scale- dependent kurtosis, and fractal spectrum of magnetic-field fluctuations. It is found that the magnetic-field flu ...

Zhang, J.; Huang, S.~Y.; Yuan, Z.~G.; Jiang, K.; Xu, S.~B.; Bandyopadhyay, R.; Wei, Y.~Y.; Xiong, Q.~Y.; Wang, Z.; Yu, L.; Lin, R.~T.;

Published by: \apj      Published on: oct

YEAR: 2022     DOI: 10.3847/1538-4357/ac8c34

Parker Data Used; Solar wind; interplanetary turbulence; 1534; 830

Spacecraft Makes Progress on Solar Heating Mystery

McCormick, Katie;

Published by: Physics Online Journal      Published on: oct

YEAR: 2022     DOI: 10.1103/Physics.15.157

Parker Data Used

In Situ Signature of Cyclotron Resonant Heating in the Solar Wind

Bowen, Trevor; Chandran, Benjamin; Squire, Jonathan; Bale, Stuart; Duan, Die; Klein, Kristopher; Larson, Davin; Mallet, Alfred; McManus, Michael; Meyrand, Romain; Verniero, Jaye; Woodham, Lloyd;

Published by: \prl      Published on: oct

YEAR: 2022     DOI: 10.1103/PhysRevLett.129.165101

Parker Data Used

Broadband Electrostatic Waves near the Lower-hybrid Frequency in the Near-Sun Solar Wind Observed by the Parker Solar Probe

Zhao, Jinsong; Malaspina, David; de Wit, Dudok; Pierrard, Viviane; Voitenko, Yuriy; Lapenta, Giovanni; Poedts, Stefaan; Bale, Stuart; Kasper, Justin; Larson, Davin; Livi, Roberto; Whittlesey, Phyllis;

Published by: \apjl      Published on: oct

YEAR: 2022     DOI: 10.3847/2041-8213/ac92e3

Parker Data Used; Solar wind; Plasma physics; Space plasmas; 1534; 2089; 1544

Observation and Modeling of the Solar Wind Turbulence Evolution in the Sub-Mercury Inner Heliosphere

Telloni, Daniele; Adhikari, Laxman; Zank, Gary; Hadid, Lina; anchez-Cano, Beatriz; Sorriso-Valvo, Luca; Zhao, Lingling; Panasenco, Olga; Shi, Chen; Velli, Marco; Susino, Roberto; Verscharen, Daniel; Milillo, Anna; Alberti, Tommaso; Narita, Yasuhito; Verdini, Andrea; Grimani, Catia; Bruno, Roberto; Amicis, Raffaella; Perrone, Denise; Marino, Raffaele; Carbone, Francesco; Califano, Francesco; Malara, Francesco; Stawarz, Julia; Laker, Ronan; Liberatore, Alessandro; Bale, Stuart; Kasper, Justin; Heyner, Daniel; de Wit, Thierry; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, David; Pulupa, Marc; Case, Anthony; Korreck, Kelly; Larson, Davin; Livi, Roberto; Stevens, Michael; Whittlesey, Phyllis; Auster, Hans-Ulrich; Richter, Ingo;

Published by: \apjl      Published on: oct

YEAR: 2022     DOI: 10.3847/2041-8213/ac9624

Parker Data Used; Magnetohydrodynamics; Alfven waves; Space plasmas; interplanetary turbulence; Heliosphere; Solar wind; 1964; 23; 1544; 830; 711; 1534

Cross-scale Correlations in Imbalanced Solar Wind Turbulence: Parker Solar Probe Observations

Zhao, G.~Q.; Meyrand, R.; Feng, H.~Q.; Wu, D.~J.; Kasper, J.~C.;

Published by: \apj      Published on: oct

YEAR: 2022     DOI: 10.3847/1538-4357/ac9380

Parker Data Used; Solar wind; interplanetary turbulence; Solar coronal heating; Space plasmas; Plasma physics; 1534; 830; 1989; 1544; 2089

2D and Slab Turbulent Cascade Rates in the Inner Heliosphere

Adhikari, L.; Zank, G.~P.; Zhao, L.; Telloni, D.;

Published by: \apj      Published on: oct

YEAR: 2022     DOI: 10.3847/1538-4357/ac9234

Parker Data Used; The Sun; interplanetary turbulence; Heliosphere; 1693; 830; 711

Tracking a Beam of Electrons from the Low Solar Corona into Interplanetary Space with the Low Frequency Array, Parker Solar Probe, and 1 au Spacecraft

Badman, Samuel; Carley, Eoin; Ca\~nizares, Luis; Dresing, Nina; Jian, Lan; Lario, David; Gallagher, Peter; Oliveros, Juan; Pulupa, Marc; Bale, Stuart;

Published by: \apj      Published on: oct

YEAR: 2022     DOI: 10.3847/1538-4357/ac90c2

Parker Data Used; Solar coronal radio emission; Active Solar Corona; Solar corona; Heliosphere; Solar energetic particles; 1993; 1988; 1483; 711; 1491; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Magnetic Switchbacks Heat the Solar Corona

Akhavan-Tafti, M.; Kasper, J.; Huang, J.; Thomas, L.;

Published by: \apjl      Published on: oct

YEAR: 2022     DOI: 10.3847/2041-8213/ac913d

Parker Data Used; Solar coronal heating; Solar magnetic reconnection; Solar wind; Heliosphere; 1989; 1504; 1534; 711

Direct First Parker Solar Probe Observation of the Interaction of Two Successive Interplanetary Coronal Mass Ejections in 2020 November

We investigate the effects of the evolutionary processes in the internal magnetic structure of two interplanetary coronal mass ejections (ICMEs) detected in situ between 2020 November 29 and December 1 by the Parker Solar Probe (PSP). The sources of the ICMEs were observed remotely at the Sun in EUV and subsequently tracked to their coronal counterparts in white light. This period is of particular interest to the community as it has been identified as the first widespread solar energetic particle event of solar cycle 25. The ...

Nieves-Chinchilla, Teresa; Alzate, Nathalia; Cremades, Hebe; ia, Laura; Santos, Luiz; Narock, Ayris; Xie, Hong; Szabo, Adam; Palmerio, Erika; Krupar, Vratislav; Pulupa, Marc; Lario, David; Stevens, Michael; Wilson, Lynn; Kwon, Ryun-Young; Mays, Leila; St. Cyr, Chris; Hess, Phillip; Reeves, Katharine; Seaton, Daniel; Niembro, Tatiana; Bale, Stuart; Kasper, Justin;

Published by: \apj      Published on: may

YEAR: 2022     DOI: 10.3847/1538-4357/ac590b

Parker Data Used; Solar coronal mass ejections; Solar wind; Interplanetary physics; 310; 1534; 827; Astrophysics - Solar and Stellar Astrophysics

CMEs and SEPs During November-December 2020: A Challenge for Real-Time Space Weather Forecasting

Predictions of coronal mass ejections (CMEs) and solar energetic particles (SEPs) are a central issue in space weather forecasting. In recent years, interest in space weather predictions has expanded to include impacts at other planets beyond Earth as well as spacecraft scattered throughout the heliosphere. In this sense, the scope of space weather science now encompasses the whole heliospheric system, and multipoint measurements of solar transients can provide useful insights and validations for prediction models. In this w ...

Palmerio, Erika; Lee, Christina; Mays, Leila; Luhmann, Janet; Lario, David; anchez-Cano, Beatriz; Richardson, Ian; Vainio, Rami; Stevens, Michael; Cohen, Christina; Steinvall, Konrad; Möstl, Christian; Weiss, Andreas; Nieves-Chinchilla, Teresa; Li, Yan; Larson, Davin; Heyner, Daniel; Bale, Stuart; Galvin, Antoinette; Holmström, Mats; Khotyaintsev, Yuri; Maksimovic, Milan; Mitrofanov, Igor;

Published by: Space Weather      Published on: may

YEAR: 2022     DOI: 10.1029/2021SW002993

Parker Data Used; coronal mass ejections; Solar energetic particles; space weather forecasts; MHD models; Inner heliosphere; Solar wind; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Earth and Planetary Astrophysics; Physics - Space Physics

Density Compressions at Magnetic Switchbacks Associated With Fast Plasma: A Superposed Epoch Analysis

Many magnetic field switchbacks were detected by the Parker Solar Probe and their origin remains a puzzle. We did a superposed epoch analysis (SEA) to investigate the plasma characteristics in the vicinity of switchbacks and their radial evolution. SEA is good way to get the statistical average features of certain types of events that have obvious boundaries and different durations. For 55 events ranging from 1 to 30 min, the SEA results show that a small parcel of plasma is piling up in front of the reversed field, and ...

Liu, Ruoyan; Liu, Yong; Huang, Jia; Huang, Zhaohui; Klecker, Berndt; Wang, Chi;

Published by: Journal of Geophysical Research (Space Physics)      Published on: may

YEAR: 2022     DOI: 10.1029/2022JA030382

Parker Data Used; Solar wind; magnetic fields; switchbacks

The incompressible energy cascade rate in anisotropic solar wind turbulence

Context. The presence of a magnetic guide field induces several types of anisotropy in solar wind turbulence. The energy cascade rate between scales in the inertial range depends strongly on the direction of this magnetic guide field, splitting the energy cascade according to the parallel and perpendicular directions with respect to magnetic guide field. \ Aims: Using more than two years of Parker Solar Probe (PSP) observations, the isotropy and anisotropy energy cascade rates are investigated. The variance and normalized fl ...

es, Andr\; Sahraoui, F.; Huang, S.; Hadid, L.~Z.; Galtier, S.;

Published by: \aap      Published on: may

YEAR: 2022     DOI: 10.1051/0004-6361/202142994

Parker Data Used; turbulence; magnetohydrodynamics (MHD); plasmas; Physics - Plasma Physics; Astrophysics - Solar and Stellar Astrophysics

Multi-scale image preprocessing and feature tracking for remote CME characterization

Coronal Mass Ejections (CMEs) influence the interplanetary environment over vast distances in the solar system by injecting huge clouds of fast solar plasma and energetic particles (SEPs). A number of fundamental questions remain about how SEPs are produced, but current understanding points to CME-driven shocks and compressions in the solar corona. At the same time, unprecedented remote and in situ (Parker Solar Probe, Solar Orbiter) solar observations are becoming available to constrain existing theories. Here we present a ...

Stepanyuk, Oleg; Kozarev, Kamen; Nedal, Mohamed;

Published by: Journal of Space Weather and Space Climate      Published on: may

YEAR: 2022     DOI: 10.1051/swsc/2022020

Parker Data Used; Coronal bright fronts; coronal mass ejections; image processing; eruptive filaments; CME; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Instrumentation and Methods for Astrophysics; Physics - Space Physics

Parker Solar Probe Observations of Solar Wind Energetic Proton Beams Produced by Magnetic Reconnection in the Near-Sun Heliospheric Current Sheet

We report observations of reconnection exhausts in the Heliospheric Current Sheet (HCS) during Parker Solar Probe Encounters 08 and 07, at 16 R$_s$ and 20 R$_s$, respectively. Heliospheric current sheet (HCS) reconnection accelerated protons to almost twice the solar wind speed and increased the proton core energy by a factor of \ensuremath\sim3, due to the Alfv\ en speed being comparable to the solar wind flow speed at these near-Sun distances. Furthermore, protons were energized to super-thermal energies. During E08, energ ...

Phan, T.~D.; Verniero, J.~L.; Larson, D.; Lavraud, B.; Drake, J.~F.; Oieroset, M.; Eastwood, J.~P.; Bale, S.~D.; Livi, R.; Halekas, J.~S.; Whittlesey, P.~L.; Rahmati, A.; Stansby, D.; Pulupa, M.; MacDowall, R.~J.; Szabo, P.~A.; Koval, A.; Desai, M.; Fuselier, S.~A.; Velli, M.; Hesse, M.; Pyakurel, P.~S.; Maheshwari, K.; Kasper, J.~C.; Stevens, J.~M.; Case, A.~W.; Raouafi, N.~E.;

Published by: \grl      Published on: may

YEAR: 2022     DOI: 10.1029/2021GL096986

Parker Data Used; magnetic reconnection; Particle acceleration; Solar wind; parker solar probe; heliospheric current sheet

Frequency Transition From Weak to Strong Turbulence in the Solar Wind

During a specific time window while approaching the Sun, the longitudinal speed of Parker Solar Probe matches that of the Sun s rotation. The spacecraft therefore co-rotates with the Sun, and as long as it does so, it is immersed in the solar-wind plasma of the same flow tube. This unique feature of the Parker Solar Probe s orbital configuration is exploited in this work for the first time, to investigate the spectral properties of the turbulence of the same plasma stream, from large to small scales, very close to the Sun. S ...

Telloni, Daniele;

Published by: Frontiers in Astronomy and Space Sciences      Published on: may

YEAR: 2022     DOI: 10.3389/fspas.2022.917393

Parker Data Used

Eruption and Interplanetary Evolution of a Stealthy Streamer-Blowout CME Observed by PSP at \ensuremath\sim0.5 AU

Streamer-blowout coronal mass ejections (SBO-CMEs) are the dominant CME population during solar minimum. Although they are typically slow and lack clear low-coronal signatures, they can cause geomagnetic storms. With the aid of extrapolated coronal fields and remote observations of the off-limb low corona, we study the initiation of an SBO-CME preceded by consecutive CME eruptions consistent with a multi-stage sympathetic breakout scenario. From inner-heliospheric Parker Solar Probe (PSP) observations, it is evident that the ...

Pal, Sanchita; Lynch, Benjamin; Good, Simon; Palmerio, Erika; Asvestari, Eleanna; Pomoell, Jens; Stevens, Michael; Kilpua, Emilia;

Published by: Frontiers in Astronomy and Space Sciences      Published on: may

YEAR: 2022     DOI: 10.3389/fspas.2022.903676

Parker Data Used; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Sudden depletion of Alfv\ enic turbulence in the rarefaction region of corotating solar wind high-speed streams at 1 AU: Possible solar origin?

A canonical description of a corotating solar wind high-speed stream in terms of velocity profile would indicate three main regions: a stream interface or corotating interaction region characterized by a rapid increase in flow speed and by compressive phenomena that are due to dynamical interaction between the fast wind flow and the slower ambient plasma; a fast wind plateau characterized by weak compressive phenomena and large-amplitude fluctuations with a dominant Alfv\ enic character; and a rarefaction region characterize ...

Carnevale, G.; Bruno, R.; Marino, R.; Pietropaolo, E.; Raines, J.~M.;

Published by: \aap      Published on: may

YEAR: 2022     DOI: 10.1051/0004-6361/202040006

turbulence; Sun: magnetic fields; Solar wind; magnetohydrodynamics (MHD); Sun: corona; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics

Intermittency in the Expanding Solar Wind: Observations from Parker Solar Probe (0.16 au), Helios 1 (0.3-1 au), and Voyager 1 (1-10 au)

We examine statistics of magnetic-field vector components to explore how intermittency evolves from near-Sun plasma to radial distances as large as 10 au. Statistics entering the analysis include autocorrelation, magnetic structure functions of the order of n (SF$_ n $), and scale-dependent kurtosis (SDK), each grouped in ranges of heliocentric distance. The Goddard Space Flight Center Space Physics Data Facility provides magnetic-field measurements for resolutions of 6.8 ms for Parker Solar Probe, 6 s for Helios, and 1.92 s ...

Cuesta, Manuel; Parashar, Tulasi; Chhiber, Rohit; Matthaeus, William;

Published by: \apjs      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4365/ac45fa

Parker Data Used; Solar wind; interplanetary magnetic fields; Space plasmas; interplanetary turbulence; Interplanetary physics; 1534; 824; 1544; 830; 827; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Relativistic Particle Transport and Acceleration in Structured Plasma Turbulence

We discuss the phenomenon of energization of relativistic charged particles in three-dimensional incompressible MHD turbulence and the diffusive properties of the motion of the same particles. We show that the random electric field induced by turbulent plasma motion leads test particles moving in a simulated box to be accelerated in a stochastic way, a second-order Fermi process. A small fraction of these particles happen to be trapped in large- scale structures, most likely formed due to the interaction of islands in the tu ...

Pezzi, Oreste; Blasi, Pasquale; Matthaeus, William;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac5332

Parker Data Used; Magnetohydrodynamics; cosmic rays; Particle astrophysics; 1964; 329; 96; Astrophysics - High Energy Astrophysical Phenomena; Physics - Plasma Physics

Core Electron Heating by Triggered Ion Acoustic Waves in the Solar Wind

Perihelion passes on Parker Solar Probe orbits 6-9 have been studied to show that solar wind core electrons emerged from 15 solar radii with a temperature of 55 \ensuremath\pm 5 eV, independent of the solar wind speed, which varied from 300 to 800 km s$^-1$. After leaving 15 solar radii and in the absence of triggered ion acoustic waves at greater distances, the core electron temperature varied with radial distance, R, in solar radii, as 1900R $^-4/3$ eV because of cooling produced by the adiabatic expansion. The coefficient ...

Mozer, F.~S.; Bale, S.~D.; Cattell, C.~A.; Halekas, J.; Vasko, I.~Y.; Verniero, J.~L.; Kellogg, P.~J.;

Published by: \apjl      Published on: mar

YEAR: 2022     DOI: 10.3847/2041-8213/ac5520

Parker Data Used; Solar corona; Solar wind; 1483; 1534; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Statistical Analysis of Intermittency and its Association with Proton Heating in the Near-Sun Environment

We use data from the first six encounters of the Parker Solar Probe and employ the partial variance of increments (PVI) method to study the statistical properties of coherent structures in the inner heliosphere with the aim of exploring physical connections between magnetic field intermittency and observable consequences such as plasma heating and turbulence dissipation. Our results support proton heating localized in the vicinity of, and strongly correlated with, magnetic structures characterized by PVI \ensuremath\geq 1. W ...

Sioulas, Nikos; Velli, Marco; Chhiber, Rohit; Vlahos, Loukas; Matthaeus, William; Bandyopadhyay, Riddhi; Cuesta, Manuel; Shi, Chen; Bowen, Trevor; Qudsi, Ramiz; Stevens, Michael; Bale, Stuart;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4fc1

Parker Data Used; Solar wind; Space plasmas; Plasma astrophysics; 1534; 1544; 1261; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Langmuir-Slow Extraordinary Mode Magnetic Signature Observations with Parker Solar Probe

Radio emission from interplanetary shocks, planetary foreshocks, and some solar flares occurs in the so-called plasma emission framework. The generally accepted scenario begins with electrostatic Langmuir waves that are driven by a suprathermal electron beam on the Landau resonance. These Langmuir waves then mode-convert to freely propagating electromagnetic emissions at the local plasma frequency f $_ pe $ and/or its harmonic 2f $_ pe $. However, the details of the physics of mode conversion are unclear, and so far the ...

Larosa, A.; de Wit, Dudok; Krasnoselskikh, V.; Bale, S.~D.; Agapitov, O.; Bonnell, J.; Froment, C.; Goetz, K.; Harvey, P.; Halekas, J.; Kretzschmar, M.; MacDowall, R.; Malaspina, David; Moncuquet, M.; Niehof, J.; Pulupa, M.; Revillet, C.;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4e85

Parker Data Used; Solar wind; Plasma physics; Space plasmas; 1534; 2089; 1544

Suprathermal Ion Energy Spectra and Anisotropies near the Heliospheric Current Sheet Crossing Observed by the Parker Solar Probe during Encounter 7

We present observations of \ensuremath\gtrsim10-100 keV nucleon$^-1$ suprathermal (ST) H, He, O, and Fe ions associated with crossings of the heliospheric current sheet (HCS) at radial distances of <0.1 au from the Sun. Our key findings are as follows: (1) very few heavy ions are detected during the first full crossing, the heavy-ion intensities are reduced during the second partial crossing and peak just after the second crossing; (2) ion arrival times exhibit no velocity dispersion; (3) He pitch-angle distributions track t ...

Desai, M.~I.; Mitchell, D.~G.; McComas, D.~J.; Drake, J.~F.; Phan, T.; Szalay, J.~R.; Roelof, E.~C.; Giacalone, J.; Hill, M.~E.; Christian, E.~R.; Schwadron, N.~A.; McNutt, R.~L.; Wiedenbeck, M.~E.; Joyce, C.; Cohen, C.~M.~S.; Davis, A.~J.; Krimigis, S.~M.; Leske, R.~A.; Matthaeus, W.~H.; Malandraki, O.; Mewaldt, R.~A.; Labrador, A.; Stone, E.~C.; Bale, S.~D.; Verniero, J.; Rahmati, A.; Whittlesey, P.; Livi, R.; Larson, D.; Pulupa, M.; MacDowall, R.~J.; Niehof, J.~T.; Kasper, J.~C.; Horbury, T.~S.;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4961

Parker Data Used; The Sun; Solar magnetic reconnection; Interplanetary particle acceleration; interplanetary magnetic fields; Heliosphere; 1693; 1504; 826; 824; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Flux rope and dynamics of the heliospheric current sheet. Study of the Parker Solar Probe and Solar Orbiter conjunction of June 2020

Context. Solar Orbiter and Parker Solar Probe jointly observed the solar wind for the first time in June 2020, capturing data from very different solar wind streams: calm, Alfv\ enic wind and also highly dynamic large-scale structures. Context. Our aim is to understand the origin and characteristics of the highly dynamic solar wind observed by the two probes, particularly in the vicinity of the heliospheric current sheet (HCS). \ Methods: We analyzed the plasma data obtained by Parker Solar Probe and Solar Orbiter in situ du ...

Réville, V.; Fargette, N.; Rouillard, A.~P.; Lavraud, B.; Velli, M.; Strugarek, A.; Parenti, S.; Brun, A.~S.; Shi, C.; Kouloumvakos, A.; Poirier, N.; Pinto, R.~F.; Louarn, P.; Fedorov, A.; Owen, C.~J.; enot, V.; Horbury, T.~S.; Laker, R.; Brien, H.; Angelini, V.; Fauchon-Jones, E.; Kasper, J.~C.;

Published by: \aap      Published on: mar

YEAR: 2022     DOI: 10.1051/0004-6361/202142381

Parker Data Used; Solar wind; magnetohydrodynamics (MHD); magnetic reconnection; methods: numerical; methods: data analysis; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Analysis of the Distribution, Rotation and Scale Characteristics of Solar Wind Switchbacks: Comparison between the First and Second Encounters of Parker Solar Probe

The S-shaped magnetic structure in the solar wind formed by the twisting of magnetic field lines is called a switchback, whose main characteristics are the reversal of the magnetic field and the significant increase in the solar wind radial velocity. We identify 242 switchbacks during the first two encounters of Parker Solar Probe. Statistics methods are applied to analyze the distribution and the rotation angle and direction of the magnetic field rotation of the switchbacks. The diameter of switchbacks is estimated with a m ...

Meng, Ming-Ming; Liu, Ying; Chen, Chong; Wang, Rui;

Published by: Research in Astronomy and Astrophysics      Published on: mar

YEAR: 2022     DOI: 10.1088/1674-4527/ac49e4

Parker Data Used; ISM: magnetic fields; methods: statistical; (Sun:) solar wind; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

An Extended and Fragmented Alfv\ en Zone in the Young Solar Wind

Motivated by theoretical, numerical, and observational evidence, we explore the possibility that the critical transition between sub-Alfv\ enic flow and super-Alfv\ enic flow in the solar atmosphere takes place in fragmented and disconnected subvolumes within a general Alfv\ en critical zone. The initial observations of sub-Alfv\ enic periods by Parker Solar Probe near 16 R$_\ensuremath\odot$ do not yet provide sufficient evidence to distinguish this possibility from that of a folded surface that separates simply-connected r ...

Chhiber, Rohit; Matthaeus, William; Usmanov, Arcadi; Bandyopadhyay, Riddhi; Goldstein, Melvyn;

Published by: \mnras      Published on: mar

YEAR: 2022     DOI: 10.1093/mnras/stac779

Parker Data Used; Sun: corona; Solar wind; turbulence

Categorizing MHD Discontinuities in the Inner Heliosphere by Utilizing the PSP Mission

The interplanetary discontinuities (IDs) have been widely observed in astrophysical and space plasmas, while their characteristics and evolutions within 0.3 AU are still unclear due to the limitation of spacecraft orbits in previous missions. Here, we report three ID events, including a rotational discontinuity (RD), a tangential discontinuity (TD), and a suspected contact discontinuity (CD), detected by the Parker Solar Probe in a previously unexplored region of the heliosphere as close to the Sun as 0.13 AU. By the combina ...

Liu, Y.~Y.; Fu, H.~S.; Cao, J.~B.; Yu, Y.; Liu, C.~M.; Wang, Z.; Guo, Z.~Z.; He, R.~J.;

Published by: Journal of Geophysical Research (Space Physics)      Published on: mar

YEAR: 2022     DOI: 10.1029/2021JA029983

Parker Data Used

PSP Observations of a Slow Shock Pair Bounding a Large-Scale Plasmoid/Macro Magnetic Hole

Slow shocks are introduced to be the main dissipation sites in Petschek reconnection model, but they are seldom observed in interplanetary space. We report a slow shock pair bounding a plasmoid/macro magnetic hole observed by Parker Solar Probe. The jump conditions across the shocks are examined and confirmed to satisfy the Rankine-Hugoniot relations. The flow speed in the preshock and postshock regions of both shocks match up with the characteristics of slow shocks. The slow shock pair is suggested to be a part of a curved ...

Zhou, Zilu; Xu, Xiaojun; Zuo, Pingbing; Wang, Yi; Wang, Ludi; Ye, Yudong; Wang, Ming; Chang, Qing; Wang, Xing; Luo, Lei;

Published by: \grl      Published on: mar

YEAR: 2022     DOI: 10.1029/2021GL097564

Parker Data Used; slow shocks; magnetic reconnection; Solar wind; magnetic hole

The Kinetic Expansion of Solar-wind Electrons: Transport Theory and Predictions for the Very Inner Heliosphere

We propose a transport theory for the kinetic evolution of solar-wind electrons in the heliosphere. We derive a gyro-averaged kinetic transport equation that accounts for the spherical expansion of the solar wind and the geometry of the Parker spiral magnetic field. To solve our three-dimensional kinetic equation, we develop a mathematical approach that combines the Crank-Nicolson scheme in velocity space and a finite-difference Euler scheme in configuration space. We initialize our model with isotropic electron distribution ...

Jeong, Seong-Yeop; Verscharen, Daniel; Vocks, Christian; Abraham, Joel; Owen, Christopher; Wicks, Robert; Fazakerley, Andrew; Stansby, David; Ber\vci\vc, Laura; Nicolaou, Georgios; Rueda, Jeffersson; Bakrania, Mayur;

Published by: \apj      Published on: mar

YEAR: 2022     DOI: 10.3847/1538-4357/ac4805

Parker Data Used; Solar wind; Space plasmas; Heliosphere; Theoretical models; 1534; 1544; 711; 2107; Physics - Space Physics

An analytical model for dust impact voltage signals and its application to STEREO/WAVES data

Context. Dust impacts have been observed using radio and wave instruments onboard spacecraft since the 1980s. Voltage waveforms show typical impulsive signals generated by dust grains. \ Aims: We aim at developing models of how signals are generated to be able to link observed electric signals to the physical properties of the impacting dust. To validate the model, we use the Time Domain Sampler (TDS) subsystem of the STEREO/WAVES instrument which generates high- cadence time series of voltage pulses for each monopole. \ Met ...

Babic, Rackovic; Zaslavsky, A.; Issautier, K.; Meyer-Vernet, N.; Onic, D.;

Published by: \aap      Published on: mar

YEAR: 2022     DOI: 10.1051/0004-6361/202142508

Solar wind; Sun: heliosphere; methods: analytical; methods: data analysis; meteorites; meteors; Meteoroids; Interplanetary medium

HiRISE - High-Resolution Imaging and Spectroscopy Explorer - Ultrahigh resolution, interferometric and external occulting coronagraphic science

Recent solar physics missions have shown the definite role of waves and magnetic fields deep in the inner corona, at the chromosphere- corona interface, where dramatic and physically dominant changes occur. HiRISE (High Resolution Imaging and Spectroscopy Explorer), the ambitious new generation ultra-high resolution, interferometric, and coronagraphic, solar physics mission, proposed in response to the ESA Voyage 2050 Call, would address these issues and provide the best-ever and most complete solar observatory, capable of u ...

elyi, Robertus; e, Luc; Fludra, Andrzej; Mathioudakis, Mihalis; Amari, T.; Belucz, B.; Berrilli, F.; Bogachev, S.; ee, Bols\; Bothmer, V.; Brun, S.; Dewitte, S.; de Wit, Dudok; Faurobert, M.; Gizon, L.; Gyenge, N.; os, M.~B.; Labrosse, N.; Matthews, S.; Meftah, M.; Morgan, H.; e, Pall\; Rochus, P.; Rozanov, E.; Schmieder, B.; Tsinganos, K.; Verwichte, E.; Zharkov, S.; Zuccarello, F.; Wimmer-Schweingruber, R.;

Published by: Experimental Astronomy      Published on: mar

YEAR: 2022     DOI: 10.1007/s10686-022-09831-2

Solar physics mission; Ultra-high resolution; Interferometry; Coronagraph; Solar atmosphere; photosphere; chromosphere; Corona

  1      2      3      4      5      6