Parker Solar Probe Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 652 entries in the Bibliography.


Showing entries from 1 through 50


2021

Nonlinear Wave-Wave Coupling Related to Whistler-mode and Electron Bernstein Waves Observed by the Parker Solar Probe

We report nonlinear wave-wave coupling related to whistler-mode or electron Bernstein waves in the near-Sun slow solar wind with Parker Solar Probe (PSP) data. Prominent plasma wave power enhancements usually exist near the electron gyrofrequency (f$_ce$), identified as electrostatic whistler-mode and electron Bernstein waves (Malaspina et al. 2020). We find that these plasma waves near f$_ce$ typically have a harmonic spectral structure and further classify them into three types identified by the characteristics of wave fre ...

Ma, Jiuqi; Gao, Xinliang; Yang, Zhongwei; Tsurutani, Bruce; Liu, Mingzhe; Lu, Quanming; Wang, Shui;

Published by: \apj      Published on: sep

YEAR: 2021     DOI: 10.3847/1538-4357/ac0ef4

Solar wind; 1534

Icarus: In-situ monitoring of the surface degradation on a near-Sun asteroid

Icarus is a mission concept designed to record the activity of an asteroid during a close encounter with the Sun. The primary science goal of the mission is to unravel the nontrivial mechanism(s) that destroy asteroids on orbits with small perihelion distances. Understanding the destruction mechanism(s) allows us to constrain the bulk composition and interior structure of asteroids in general. The Icarus mission does not only aim to achieve its science goals but also functions as a technical demonstration of what a low-cost ...

Lehtinen, Tuomas; Granvik, Mikael; Bellome, Andrea; anchez, Joan-Pau;

Published by: Acta Astronautica      Published on: sep

YEAR: 2021     DOI: 10.1016/j.actaastro.2021.05.028

Space mission; Asteroid; Rendezvous; Near-Sun

Parker solar probe observations of helical structures as boundaries for energetic particles

Energetic particle transport in the interplanetary medium is known to be affected by magnetic structures. It has been demonstrated for solar energetic particles in near-Earth orbit studies, and also for the more energetic cosmic rays. In this paper, we show observational evidence that intensity variations of solar energetic particles can be correlated with the occurrence of helical magnetic flux tubes and their boundaries. The analysis is carried out using data from Parker Solar Probe orbit 5, in the period 2020 May 24 to Ju ...

Pecora, F.; Servidio, S.; Greco, A.; Matthaeus, W.~H.; McComas, D.~J.; Giacalone, J.; Joyce, C.~J.; Getachew, T.; Cohen, C.~M.~S.; Leske, R.~A.; Wiedenbeck, M.~E.; McNutt, R.~L.; Hill, M.~E.; Mitchell, D.~G.; Christian, E.~R.; Roelof, E.~C.; Schwadron, N.~A.; Bale, S.~D.;

Published by: \mnras      Published on: sep

YEAR: 2021     DOI: 10.1093/mnras/stab2659

magnetic fields; plasmas; Sun: magnetic fields; Sun: solar wind; Sun: particle emission; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics; Parker Data Used

Toward a Physics Based Model of Hypervelocity Dust Impacts

There has been important understanding of the process by which a hypersonic dust impact makes an electrical signal on a spacecraft sensor, leading to a fuller understanding of the

Kellogg, Paul; Bale, S.~D.; Goetz, Keith; Monson, Steven;

Published by: Journal of Geophysical Research (Space Physics)      Published on: sep

YEAR: 2021     DOI: 10.1029/2020JA028415

dust impacts; hypervelocity; impacts; Physics - Space Physics; Parker Data Used

BepiColombo s cruise phase: unique opportunity for synergistic observations

The investigation of multi-spacecraft coordinated observations during the cruise phase of BepiColombo (ESA/JAXA) are reported, with a particular emphasis on the recently launched missions, Solar Orbiter (ESA/NASA) and Parker Solar Probe (NASA). Despite some payload constraints, many instruments onboard BepiColombo are operating during its cruise phase simultaneously covering a wide range of heliocentric distances [0.28 AU - 0.5 AU]. Hence, the various spacecraft configurations and the combined in-situ and remote sensing meas ...

Hadid, L.~Z.; enot, V.; Aizawa, S.; Milillo, A.; Zender, J.; Murakami, G.; Benkhoff, J.; Zouganelis, I.; Alberti, T.; e, Andr\; Bebesi, Z.; Califano, F.; Dimmock, A.~P.; Dosa, M.; Escoubet, C.~P.; Griton, L.; Ho, G.~C.; Horbury, T.~S.; Iwai, K.; Janvier, M.; Kilpua, E.; Lavraud, B.; Madar, A.; Miyoshi, Y.; Müller, D.; Pinto, R.~F.; Rouillard, A.~P.; Raines, J.~M.; Raouafi, N.; Sahraoui, F.; anchez-Cano, B.; Shiota, D.; Vainio, R.; Walsh, A.;

Published by: Frontiers in Astronomy and Space Sciences      Published on: sep

YEAR: 2021     DOI: 10.3389/fspas.2021.718024

Solar wind; multi-spacecraft measurements; Inner heliosphere; Spacecraft mission; Coordinated measurements

Triggered Ion-acoustic Waves in the Solar Wind

For more than 12 hr beginning on 2021 January 18, continuous narrowband electrostatic emissions were observed on the Parker Solar Probe near 20 solar radii. The observed <1000 Hz frequencies were well below the local ion-plasma frequency. Surprisingly, the emissions consisted of electrostatic wave packets with shock- like envelopes, appearing repetitively at a \raisebox-0.5ex\textasciitilde1.5 Hz rate. This repetitiveness correlated and was in phase with low-frequency electromagnetic fluctuations. The emissions were associat ...

Mozer, F.~S.; Vasko, I.~Y.; Verniero, J.~L.;

Published by: \apjl      Published on: sep

YEAR: 2021     DOI: 10.3847/2041-8213/ac2259

Solar Coronal Waves; Solar wind; 1995; 1534; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Parker Data Used

On the Origin of Switchbacks Observed in the Solar Wind

The origin of switchbacks in the solar wind is discussed in two classes of theory that differ in the location of the source being either near the transition region near the Sun or in the solar wind itself. The two classes of theory differ in their predictions of the switchback rate (the number of switchbacks observed per hour) as a function of distance from the Sun. To distinguish between these theories, one-hour averages of Parker Solar Probe data were averaged over five orbits to find the following: (1) The hourly averaged ...

Mozer, F.~S.; Bale, S.~D.; Bonnell, J.~W.; Drake, J.~F.; Hanson, E.~L.~M.; Mozer, M.~C.;

Published by: \apj      Published on: sep

YEAR: 2021     DOI: 10.3847/1538-4357/ac110d

Solar wind; Solar corona; Space plasmas; 1534; 1483; 1544; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

On the Role of Solar Wind Expansion as a Source of Whistler Waves: Scattering of Suprathermal Electrons and Heat Flux Regulation in the Inner Heliosphere

The role of solar wind expansion in generating whistler waves is investigated using the EB-iPic3D code, which models solar wind expansion self-consistently within a fully kinetic semi-implicit approach. The simulation is initialized with an electron velocity distribution function modeled after observations of the Parker Solar Probe during its first perihelion at 0.166 au, consisting of a dense core and an antisunward strahl. This distribution function is initially stable with respect to kinetic instabilities. Expansion drive ...

Micera, A.; Zhukov, A.~N.; opez, R.~A.; Boella, E.; Tenerani, A.; Velli, M.; Lapenta, G.; Innocenti, M.~E.;

Published by: \apj      Published on: sep

YEAR: 2021     DOI: 10.3847/1538-4357/ac1067

Solar wind; Plasma astrophysics; Space plasmas; 1534; 1261; 1544; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics; Parker Data Used

The Evolution of Compressible Solar Wind Turbulence in the Inner Heliosphere: PSP, THEMIS, and MAVEN Observations

The first computations of the compressible energy transfer rate from \raisebox-0.5ex\textasciitilde0.2 up to \raisebox-0.5ex\textasciitilde1.7 au is obtained using Parker Solar Probe (PSP), Time History of Events and Macroscale Interactions during Substorms (THEMIS), and Mars Atmosphere and Volatile EvolutioN (MAVEN) observations. Using a recently derived exact relation for isothermal magnetohydrodynamics turbulence, the compressible energy cascade rate, \ensuremath\varepsilon$_C$, is computed for hundred of events at differ ...

es, Andr\; Sahraoui, F.; Hadid, L.~Z.; Huang, S.~Y.; Romanelli, N.; Galtier, S.; DiBraccio, G.; Halekas, J.;

Published by: \apj      Published on: sep

YEAR: 2021     DOI: 10.3847/1538-4357/ac0af5

Solar wind; Fast solar wind; Slow solar wind; Interplanetary physics; 1534; 1872; 1873; 827; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Parker Data Used

Evolution of Large-amplitude Alfv\ en Waves and Generation of Switchbacks in the Expanding Solar Wind

Motivated by recent Parker Solar Probe (PSP) observations of switchbacks (abrupt, large-amplitude reversals in the radial magnetic field, which exhibit Alfv\ enic correlations), we examine the dynamics of large-amplitude Alfv\ en waves in the expanding solar wind. We develop an analytic model that makes several predictions: switchbacks should preferentially occur in regions where the solar wind plasma has undergone a greater expansion, the switchback fraction at radii comparable to PSP should be an increasing function of ...

Mallet, Alfred; Squire, Jonathan; Chandran, Benjamin; Bowen, Trevor; Bale, Stuart;

Published by: \apj      Published on: sep

YEAR: 2021     DOI: 10.3847/1538-4357/ac0c12

Alfven waves; Magnetohydrodynamics; Solar wind; Space plasmas; 23; 1964; 1534; 1544; Parker Data Used

Solar wind rotation rate and shear at coronal hole boundaries. Possible consequences for magnetic field inversions

Context. In situ measurements by several spacecraft have revealed that the solar wind is frequently perturbed by transient structures that have been interpreted as magnetic folds, jets, waves, and flux ropes that propagate rapidly away from the Sun over a large range of heliocentric distances. Parker Solar Probe (PSP), in particular, has detected very frequent rotations of the magnetic field vector at small heliocentric radial distances, accompanied by surprisingly large solar wind rotation rates. The physical origin of such ...

Pinto, R.~F.; Poirier, N.; Rouillard, A.~P.; Kouloumvakos, A.; Griton, L.; Fargette, N.; Kieokaew, R.; Lavraud, B.; Brun, A.~S.;

Published by: \aap      Published on: sep

YEAR: 2021     DOI: 10.1051/0004-6361/202040180

Sun: corona; Sun: rotation; Solar wind; Astrophysics - Solar and Stellar Astrophysics

Dust Directionality and an Anomalous Interplanetary Dust Population Detected by the Parker Solar Probe

Theory and previous space missions indicate there are several populations of zodiacal dust. The most prominent populations are grains on bound elliptic orbits (\ensuremath\alpha-meteoroids), and \ensuremath\beta-meteoroids on hyperbolic escape trajectories governed largely by their size and composition. Yet, there may be other populations not yet confirmed by observation. The Parker Solar Probe (PSP) spacecraft is able to observe in situ dust populations in the densest part of the zodiacal cloud. Over the first seven orbits, ...

Pusack, A.; Malaspina, D.~M.; Szalay, J.~R.; Bale, S.~D.; Goetz, Keith; MacDowall, Robert; Pulupa, Marc;

Published by: \psj      Published on: oct

YEAR: 2021     DOI: 10.3847/PSJ/ac0bb9

Zodiacal cloud; Micrometeoroids; 1845; 1048; Parker Data Used

Collisional Evolution of the Inner Zodiacal Cloud

The zodiacal cloud is one of the largest structures in the solar system and strongly governed by meteoroid collisions near the Sun. Collisional erosion occurs throughout the zodiacal cloud, yet it is historically difficult to directly measure and has never been observed for discrete meteoroid streams. After six orbits with Parker Solar Probe (PSP), its dust impact rates are consistent with at least three distinct populations: bound zodiacal dust grains on elliptic orbits (\ensuremath\alpha-meteoroids), unbound \ensuremath\be ...

Szalay, J.~R.; y, Pokorn\; Malaspina, D.~M.; Pusack, A.; Bale, S.~D.; Battams, K.; Gasque, L.~C.; Goetz, K.; Krüger, H.; McComas, D.~J.; Schwadron, N.~A.; Strub, P.;

Published by: \psj      Published on: oct

YEAR: 2021     DOI: 10.3847/PSJ/abf928

Circumstellar dust; Interplanetary dust; Debris disks; Parker Data Used; Meteoroids; Meteor streams; 236; 821; 363; 1040; 1035; Astrophysics - Earth and Planetary Astrophysics; Physics - Space Physics

Characteristic Scales of Magnetic Switchback Patches Near the Sun and Their Possible Association With Solar Supergranulation and Granulation

Parker Solar Probe (PSP) data recorded within a heliocentric radial distance of 0.3 au have revealed a magnetic field dominated by Alfv\ enic structures that undergo large local variations or even reversals of the radial magnetic field. They are called magnetic switchbacks, they are consistent with folds in magnetic field lines within a same magnetic sector and are associated with velocity spikes during an otherwise calmer background. They are thought to originate either in the low solar atmosphere through magnetic reconnect ...

Fargette, Na; Lavraud, Benoit; Rouillard, Alexis; eville, Victor; de Wit, Thierry; Froment, Clara; Halekas, Jasper; Phan, Tai; Malaspina, David; Bale, Stuart; Kasper, Justin; Louarn, Philippe; Case, Anthony; Korreck, Kelly; Larson, Davin; Pulupa, Marc; Stevens, Michael; Whittlesey, Phyllis; Berthomier, Matthieu;

Published by: \apj      Published on: oct

YEAR: 2021     DOI: 10.3847/1538-4357/ac1112

Solar wind; Solar Physics; Wavelet analysis; Supergranulation; Solar granulation; Solar magnetic fields; 1534; 1476; 1918; 1662; 1498; 1503; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used

Effect of Dust Rotational Disruption by Radiative Torques and Implications for the F-corona Decrease Revealed by the Parker Solar Probe

The first-year results from the Parker Solar Probe (PSP) reveal a

Hoang, Thiem; Lazarian, Alex; Lee, Hyeseung; Cho, Kyungsuk; Gu, Pin-Gao; Ng, Chi-Hang;

Published by: \apj      Published on: oct

YEAR: 2021     DOI: 10.3847/1538-4357/ac126e

Solar F corona; Interstellar dust; Interplanetary dust; Circumstellar dust; 1991; 836; 821; 236; Astrophysics - Solar and Stellar Astrophysics; Astrophysics - Astrophysics of Galaxies; Physics - Space Physics; Parker Data Used

Parker Solar Probe FIELDS Instrument Charging in the Near Sun Environment: Part 1: Computational Model

The Spacecraft Interaction Plasma Software package (SPIS), a three dimension particle in cell (PIC) code, was used to model the Parker Solar Probe (PSP) spacecraft and FIELDS instrument and their interactions with the Solar wind. Our SPIS modeling relied on material properties of new spacecraft materials that we had obtained in previous work. The model was used to find the floating potentials of the spacecraft and FIELDS antennas at different distances from the Sun (from 1AU to 0.046AU). We find the following results: At gre ...

Diaz-Aguado, M.~F.; Bonnell, J.~W.; Bale, S.~D.; Wang, J.; Gruntman, M.;

Published by: Journal of Geophysical Research (Space Physics)      Published on: may

YEAR: 2021     DOI: 10.1029/2020JA028688

Parker Data Used; plasma environment; spacecraft charging

Using a Heliospheric Upwinding eXtrapolation (HUX) Technique to Magnetically Connect Different Regions of the Heliosphere

Understanding how coronal structure propagates and evolves from the Sun and into the heliosphere has been thoroughly explored using sophisticated MHD models. From these, we have a reasonably good working understanding of the dynamical processes that shape the formation and evolution of stream interaction regions and rarefactions, including their locations, orientations, and structure. However, given the technical expertise required to produce, maintain, and run global MHD models, their use has been relatively restricted. In ...

Riley, Pete; Issan, Opal;

Published by: Frontiers in Physics      Published on: may

YEAR: 2021     DOI: 10.3389/fphy.2021.679497

Heliosphere (711); Solar wind streams; coronal mass ejection; Magnetohydrodynamics; space weather

Exploiting white-light observations to improve estimates of magnetic connectivity

The \emph\Solar Orbiter\ (\emph\SolO\) and \emph\Parker Solar Probe\ (\emph\PSP\) missions have opened up new challenges for the heliospheric scientific community. Their proximity to the Sun and their high quality measurements allow us to investigate, for the first time, potential sources for the solar wind plasma measured in situ. More accurate estimates of magnetic connectivities from spacecraft to the Sun are required to support science and operations for these missions. We present a methodology to systematically compare ...

Poirier, Nicolas; Rouillard, Alexis; Kouloumvakos, Athanasios; Przybylak, Alexis; Fargette, Na; Pobeda, Rapha; eville, Victor; Pinto, Rui; Indurain, Mikel; Alexandre, Matthieu;

Published by: Frontiers in Astronomy and Space Sciences      Published on: may

YEAR: 2021     DOI: 10.3389/fspas.2021.684734

White-Light Imagery; modeling; space weather; Sun: slow solar wind; Sun: magnetic fields; Sun: coronal streamers

Solar Origin of Compressive Alfv\ enic Spikes/Kinks as Observed by Parker Solar Probe

The solar wind is found by the Parker Solar Probe to be abundant with Alfv\ enic velocity spikes and magnetic field kinks. Temperature enhancement is another remarkable feature associated with the Alfv\ enic spikes. How the prototype of these coincident phenomena is generated intermittently in the source region is an important and wide-ranging subject. Here we propose a new model introducing guide-field discontinuity into the interchange magnetic reconnection between open funnels and closed loops with different magnetic heli ...

He, Jiansen; Zhu, Xingyu; Yang, Liping; Hou, Chuanpeng; Duan, Die; Zhang, Lei; Wang, Ying;

Published by: \apjl      Published on: may

YEAR: 2021     DOI: 10.3847/2041-8213/abf83d

Parker Data Used; Solar wind; Alfven waves; Solar atmosphere; Solar magnetic reconnection; 1534; 23; 1477; 1504

Evidence of Subproton Scale Magnetic Holes in the Venusian Magnetosheath

Depressions in magnetic field strength, commonly referred to as magnetic holes, are observed ubiquitously in space plasmas. Subproton scale magnetic holes with spatial scales smaller than or on the order of a proton gyroradius, are likely supported by electron current vortices, rotating perpendicular to the ambient magnetic field. While there are numerous accounts of subproton scale magnetic holes within the Earth s magnetosphere, there are few, if any, reported observations in other space plasma environments. We present the ...

Goodrich, Katherine; Bonnell, John; Curry, Shannon; Livi, Roberto; Whittlesey, Phyllis; Mozer, Forrest; Malaspina, David; Halekas, Jasper; McManus, Michael; Bale, Stuart; Bowen, Trevor; Case, Anthony; de Wit, Thierry; Goetz, Keith; Harvey, Peter; Kasper, Justin; Larson, Davin; MacDowall, Robert; Pulupa, Marc; Stevens, Michael;

Published by: \grl      Published on: mar

YEAR: 2021     DOI: 10.1029/2020GL090329

Parker Data Used

A powerful machine learning technique to extract proton core, beam, and \ensuremath\alpha-particle parameters from velocity distribution functions in space plasmas

Context. The analysis of the thermal part of velocity distribution functions (VDFs) is fundamentally important for understanding the kinetic physics that governs the evolution and dynamics of space plasmas. However, calculating the proton core, beam, and \ensuremath\alpha-particle parameters for large data sets of VDFs is a time-consuming and computationally demanding process that always requires supervision by a human expert. \ Aims: We developed a machine learning tool that can extract proton core, beam, and \ensuremath\al ...

Vech, D.; Stevens, M.~L.; Paulson, K.~W.; Malaspina, D.~M.; Case, A.~W.; Klein, K.~G.; Kasper, J.~C.;

Published by: \aap      Published on: jun

YEAR: 2021     DOI: 10.1051/0004-6361/202141063

Parker Data Used; turbulence; plasmas; waves; methods: statistical; Physics - Space Physics; Astrophysics - Instrumentation and Methods for Astrophysics; Physics - Plasma Physics

Measurement of the open magnetic flux in the inner heliosphere down to 0.13 AU

Context. Robustly interpreting sets of in situ spacecraft data of the heliospheric magnetic field (HMF) for the purpose of probing the total unsigned magnetic flux in the heliosphere is critical for constraining global coronal models as well as understanding the large scale structure of the heliosphere itself. The heliospheric flux (\ensuremath\Phi$_H$) is expected to be a spatially conserved quantity with a possible secular dependence on the solar cycle and equal to the measured radial component of the HMF weighted by the s ...

Badman, Samuel; Bale, Stuart; Rouillard, Alexis; Bowen, Trevor; Bonnell, John; Goetz, Keith; Harvey, Peter; MacDowall, Robert; Malaspina, David; Pulupa, Marc;

Published by: \aap      Published on: jun

YEAR: 2021     DOI: 10.1051/0004-6361/202039407

Parker Data Used; Sun: corona; Sun: magnetic fields; Sun: heliosphere; Solar wind; methods: data analysis; methods: statistical; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

The Electron Structure of the Solar Wind

Time-series measurements of the number density ncore and temperature Tcore of the core-electron population of the solar wind are examined at 1 AU and at 0.13 AU using measurements from the WIND and Parker Solar Probe spacecraft, respectively. A statistical analysis of the ncore and Tcore measurements at 1 AU finds that the core-electron spatial structure of the solar wind is related to the magnetic-flux-tube structure of the solar wind; this electron structure is characterized by jumps in the values of ncore and Tcore when p ...

Borovsky, Joseph; Halekas, Jasper; Whittlesey, Phyllis;

Published by: Frontiers in Astronomy and Space Sciences      Published on: jun

YEAR: 2021     DOI: 10.3389/fspas.2021.690005

Parker Data Used; Solar wind; Heliosphere; interplanetary potential; Corona; Magnetic structure

Small-scale Magnetic Flux Ropes with Field-aligned Flows via the PSP In Situ Observations

Magnetic flux rope, formed by the helical magnetic field lines, can sometimes maintain its shape while carrying significant plasma flow that is aligned with the local magnetic field. We report the existence of such structures and static flux ropes by applying the Grad-Shafranov-based algorithm to the Parker Solar Probe in situ measurements in the first five encounters. These structures are detected at heliocentric distances, ranging from 0.13 to 0.66 au, in a 4-month time period. We find that flux ropes with field-aligned fl ...

Chen, Yu; Hu, Qiang; Zhao, Lingling; Kasper, Justin; Huang, Jia;

Published by: \apj      Published on: jun

YEAR: 2021     DOI: 10.3847/1538-4357/abfd30

Parker Data Used; Solar wind; Astronomy data analysis; interplanetary turbulence; Solar magnetic reconnection; Solar magnetic fields; 1534; 1858; 830; 1504; 1503; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Narrowband oblique whistler-mode waves: comparing properties observed by Parker Solar Probe at <0.3 AU and STEREO at 1 AU

\ Aims: Large amplitude narrowband obliquely propagating whistler-mode waves at frequencies of \raisebox-0.5ex\textasciitilde0.2 f$_ce$ (electron cyclotron frequency) are commonly observed at 1 AU, and they are most consistent with the whistler heat flux fan instability. We want to determine whether similar whistler-mode waves occur inside 0.3 AU and how their properties compare to those at 1 AU. \ Methods: We utilized the waveform capture data from the Parker Solar Probe Fields instrument from Encounters 1 through 4 to deve ...

Cattell, C.; Short, B.; Breneman, A.; Halekas, J.; Whittesley, P.; Larson, D.; Kasper, J.; Stevens, M.; Case, T.; , al;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039550"

Parker Data Used; parker solar probe; Solar Probe Plus

Solar wind energy flux observations in the inner heliosphere: First results from Parker Solar Probe

\ Aims: We investigate the solar wind energy flux in the inner heliosphere using 12-day observations around each perihelion of Encounter One (E01), Two (E02), Four (E04), and Five (E05) of Parker Solar Probe (PSP), respectively, with a minimum heliocentric distance of 27.8 solar radii (R$_\ensuremath\odot$). \ Methods: Energy flux was calculated based on electron parameters (density n$_e$, core electron temperature T$_c$, and suprathermal electron temperature T$_h$) obtained from the simplified analysis of the plasma quasi-t ...

Liu, M.; Issautier, K.; Meyer-Vernet, N.; Moncuquet, M.; Maksimovic, M.; Halekas, J.; Huang, J.; Griton, L.; Bale, S.; Bonnell, J.; Case, A.; Goetz, K.; Harvey, P.; Kasper, J.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039615"

Parker Data Used; parker solar probe; Solar Probe Plus

The near-Sun streamer belt solar wind: turbulence and solar wind acceleration

The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 R$_\ensuremath\odot$, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were found to be significantly different in the inbound and outbound portions of PSP s fourth solar encounter, which was likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence ...

Chen, C.; Chandran, B.; Woodham, L.; Jones, S.; Perez, J.; Bourouaine, S.; Bowen, T.; Klein, K.; Moncuquet, M.; Kasper, J.; Bale, S.;

Published by: Astronomy and Astrophysics      Published on: jun

YEAR: 2021     DOI: "10.1051/0004-6361/202039872"

Parker Data Used; parker solar probe; Solar Probe Plus

An Interplanetary Type IIIb Radio Burst Observed by Parker Solar Probe and Its Emission Mechanism

Type IIIb radio bursts were identified as a chain of quasi-periodic striae in dynamic spectra, drifting from high to low frequencies in a manner similar to type III bursts, which fine structures may provide a clue to a better understanding of emission mechanisms. The approaching observation of the Parker Solar Probe (PSP) spacecraft provides a new chance of probing type IIIb bursts in the vicinity of the Sun. In this Letter, combining the in situ measurement of PSP and the empirical model of solar atmospheres in open magneti ...

Chen, Ling; Ma, Bing; Wu, Dejin; Zhao, Guoqing; Tang, Jianfei; Bale, Stuart;

Published by: \apjl      Published on: jul

YEAR: 2021     DOI: 10.3847/2041-8213/ac0b43

Parker Data Used; Solar radio emission; Interplanetary physics; 1522; 827

Anisotropy of Solar Wind Turbulence in the Inner Heliosphere at Kinetic Scales: PSP Observations

The anisotropy of solar wind turbulence is a critical issue in understanding the physics of energy transfer between scales and energy conversion between fields and particles in the heliosphere. Using the measurement of Parker Solar Probe (PSP), we present an observation of the anisotropy at kinetic scales in the slow, Alfv\ enic, solar wind in the inner heliosphere. The magnetic compressibility behaves as expected for kinetic Alfv\ enic turbulence below the ion scale. A steepened transition range is found between the inertia ...

Duan, Die; He, Jiansen; Bowen, Trevor; Woodham, Lloyd; Wang, Tieyan; Chen, Christopher; Mallet, Alfred; Bale, Stuart;

Published by: \apjl      Published on: jul

YEAR: 2021     DOI: 10.3847/2041-8213/ac07ac

Parker Data Used; Solar wind; interplanetary turbulence; Alfven waves; 1534; 830; 23; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics

Switchback Boundary Dissipation and Relative Age

We examine Parker Solar Probe (PSP) magnetic field and plasma observations during its first encounter with the Sun in early 2018 November. During this perihelion time, impulsive reversals in the magnetic field, called switchbacks, were found in the data set characterized by a quick rotation in B along with a simultaneous increase in solar wind flow. In this work, we examine the structure and morphology of 920 switchback boundaries as PSP enters and exits the structures, specifically looking for evidence of boundary degra ...

Farrell, W.~M.; Rasca, A.~P.; MacDowall, R.~J.; Gruesbeck, J.~R.; Bale, S.~D.; Kasper, J.~C.;

Published by: \apj      Published on: jul

YEAR: 2021     DOI: 10.3847/1538-4357/ac005b

Parker Data Used; Solar wind; Solar Physics; Solar magnetic flux emergence; Solar magnetic fields; 1534; 1476; 2000; 1503

Energetic particle evolution during coronal mass ejection passage from 0.3 to 1 AU

We provide analysis of a coronal mass ejection (CME) that passed over Parker Solar Probe (PSP) on January 20, 2020 when the spacecraft was at just 0.32 AU. The Integrated Science Investigation of the Sun instrument suite measures energetic particle populations associated with the CME before, during, and after its passage over the spacecraft. We observe a complex evolution of energetic particles, including a brief \raisebox-0.5ex\textasciitilde2 h period where the energetic particle fluxes are enhanced and the nominal orienta ...

Joyce, C.~J.; McComas, D.~J.; Schwadron, N.~A.; Vourlidas, A.; Christian, E.~R.; McNutt, R.~L.; Cohen, C.~M.~S.; Leske, R.~A.; Mewaldt, R.~A.; Stone, E.~C.; Mitchell, D.~G.; Hill, M.~E.; Roelof, E.~C.; Allen, R.~C.; Szalay, J.~R.; Rankin, J.~S.; Desai, M.~I.; Giacalone, J.; Matthaeus, W.~H.; Niehof, J.~T.; de Wet, W.; Winslow, R.~M.; Bale, S.~D.; Kasper, J.~C.;

Published by: \aap      Published on: jul

YEAR: 2021     DOI: 10.1051/0004-6361/202039933

Parker Data Used; acceleration of particles; Solar wind; magnetic fields

Flux conservation, radial scalings, Mach numbers, and critical distances in the solar wind: magnetohydrodynamics and Ulysses observations

One of the key challenges in solar and heliospheric physics is to understand the acceleration of the solar wind. As a super-sonic, super-Alfv\ enic plasma flow, the solar wind carries mass, momentum, energy, and angular momentum from the Sun into interplanetary space. We present a framework based on two-fluid magnetohydrodynamics to estimate the flux of these quantities based on spacecraft data independent of the heliocentric distance of the location of measurement. Applying this method to the Ulysses dataset allows us to st ...

Verscharen, Daniel; Bale, Stuart; Velli, Marco;

Published by: \mnras      Published on: jul

YEAR: 2021     DOI: 10.1093/mnras/stab2051

Solar wind; Sun: heliosphere; Magnetohydrodynamics; plasmas; methods: data analysis

The Sunward Electron Deficit: A Telltale Sign of the Sun s Electric Potential

As the Parker Solar Probe explores new regions of the inner heliosphere, it travels ever deeper into the electric potential of the Sun. In the near-Sun environment, a new feature of the electron distribution emerges, in the form of a deficit in the sunward suprathermal population. The lower boundary of this deficit forms a cutoff in phase space, at an energy determined by the electric potential drop between the observation point and the outer heliosphere. We explore the characteristics of the sunward deficit and the associat ...

Halekas, J.~S.; Ber\vci\vc, L.; Whittlesey, P.; Larson, D.~E.; Livi, R.; Berthomier, M.; Kasper, J.~C.; Case, A.~W.; Stevens, M.~L.; Bale, S.~D.; MacDowall, R.~J.; Pulupa, M.~P.;

Published by: \apj      Published on: jul

YEAR: 2021     DOI: 10.3847/1538-4357/ac096e

Parker Data Used; Solar wind; The Sun; 1534; 1693

General Exact Law of Compressible Isentropic Magnetohydrodynamic Flows: Theory and Spacecraft Observations in the Solar Wind

Various forms of exact laws governing magnetohydrodynamic (MHD) turbulence have been derived either in the incompressibility limit, or for isothermal compressible flows. Here we propose a more general method that allows us to obtain such laws for any turbulent isentropic flow (i.e., constant entropy). We demonstrate that the known MHD exact laws (incompressible and isothermal) and the new (polytropic) one can be obtained as specific cases of the general law when the corresponding closure equation is stated. We also recover a ...

Simon, P.; Sahraoui, F.;

Published by: \apj      Published on: jul

YEAR: 2021     DOI: 10.3847/1538-4357/ac0337

Solar wind; Solar Physics; Parker Data Used; Magnetohydrodynamics; Plasma astrophysics; Plasma physics; interplanetary turbulence; 1534; 1476; 1964; 1261; 2089; 830; Physics - Plasma Physics; Physics - Fluid Dynamics

Turbulent Generation of Magnetic Switchbacks in the Alfv\ enic Solar Wind

One of the most important early results from the Parker Solar Probe (PSP) is the ubiquitous presence of magnetic switchbacks, whose origin is under debate. Using a three-dimensional direct numerical simulation of the equations of compressible magnetohydrodynamics from the corona to 40 solar radii, we investigate whether magnetic switchbacks emerge from granulation-driven Alfv\ en waves and turbulence in the solar wind. The simulated solar wind is an Alfv\ enic slow-solar- wind stream with a radial profile consistent with var ...

Shoda, Munehito; Chandran, Benjamin; Cranmer, Steven;

Published by: \apj      Published on: jul

YEAR: 2021     DOI: 10.3847/1538-4357/abfdbc

Space plasmas; Solar wind; interplanetary turbulence; Parker Data Used; Magnetohydrodynamical simulations; Alfven waves; 1544; 1534; 830; 1966; 23; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics

Turbulence transport in the solar corona: Theory, modeling, and Parker Solar Probe

A primary goal of the Parker Solar Probe (PSP) Mission is to answer the outstanding question of how the solar corona plasma is heated to the high temperatures needed for the acceleration of the solar wind. Various heating mechanisms have been suggested, but one that is gaining increasing credence is associated with the dissipation of low frequency magnetohyrodynamic (MHD) turbulence. However, the MHD turbulence models come in several flavors: one in which outwardly propagating Alfv\ en waves experience reflection from the la ...

Zank, G.~P.; Zhao, L.; Adhikari, L.; Telloni, D.; Kasper, J.~C.; Bale, S.~D.;

Published by: Physics of Plasmas      Published on: aug

YEAR: 2021     DOI: 10.1063/5.0055692

Parker Data Used

The Formation and Lifetime of Outflows in a Solar Active Region

Active regions are thought to be one contributor to the slow solar wind. Upflows in EUV coronal spectral lines are routinely observed at their boundaries, and provide the most direct way for upflowing material to escape into the heliosphere. The mechanisms that form and drive these upflows, however, remain to be fully characterized. It is unclear how quickly they form, or how long they exist during their lifetimes. They could be initiated low in the atmosphere during magnetic flux emergence, or as a response to processes occ ...

Brooks, David; Harra, Louise; Bale, Stuart; Barczynski, Krzysztof; Mandrini, Cristina; Polito, Vanessa; Warren, Harry;

Published by: \apj      Published on: aug

YEAR: 2021     DOI: 10.3847/1538-4357/ac0917

Solar Physics; Slow solar wind; Solar active regions; Solar energetic particles; 1476; 1873; 1974; 1491; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used

First Simultaneous In Situ Measurements of a Coronal Mass Ejection by Parker Solar Probe and STEREO-A

We present the first Parker Solar Probe mission (PSP)-observed coronal mass ejection (CME) that hits a second spacecraft before the end of the PSP encounter, providing an excellent opportunity to study short-term CME evolution. The CME was launched from the Sun on 2019 October 10 and was measured in situ at PSP on 2019 October 13 and at STEREO-A on 2019 October 14. The small, but not insignificant, radial (\raisebox-0.5ex\textasciitilde0.15 au) and longitudinal (\raisebox-0.5ex\textasciitilde8\textdegree) separation between ...

Winslow, Reka; Lugaz, No\; Scolini, Camilla; Galvin, Antoinette;

Published by: \apj      Published on: aug

YEAR: 2021     DOI: 10.3847/1538-4357/ac0821

Solar coronal mass ejections; Heliosphere; 310; 711; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

Near-Sun Switchback Boundaries: Dissipation with Solar Distance

The most surprising result from the first solar encounters by the Parker Solar Probe (PSP) is the large amount of brief magnetic field reversals often referred to as switchbacks. Switchbacks have previously been observed further downstream in the solar wind by spacecraft such as Helios 2 at 62 R$_s$ from the Sun. However, these observations lack a distinct proton temperature increase detected inside switchbacks by PSP, implying that they are evolving over time to eventually reach a pressure balance at the switchback boundari ...

Rasca, Anthony; Farrell, William; MacDowall, Robert; Bale, Stuart; Kasper, Justin;

Published by: \apj      Published on: aug

YEAR: 2021     DOI: 10.3847/1538-4357/ac079f

The Sun; Solar wind; Solar Physics; 1693; 1534; 1476; Parker Data Used

Characteristics of Interplanetary Discontinuities in the Inner Heliosphere Revealed by Parker Solar Probe

We present a statistical analysis for the characteristics and spatial evolution of the interplanetary discontinuities (IDs) in the solar wind, from 0.13-0.9 au, by using the Parker Solar Probe measurements on Orbits 4 and 5. We collected 3948 IDs, including 2511 rotational discontinuities (RDs) and 557 tangential discontinuities (TDs), with the remnant unidentified. The statistical results show that (1) the ID occurrence rate decreases from 200 events per day at 0.13 au to 1 event per day at 0.9 au, following a spatial scali ...

Liu, Y.~Y.; Fu, H.~S.; Cao, J.~B.; Liu, C.~M.; Wang, Z.; Guo, Z.~Z.; Xu, Y.; Bale, S.~D.; Kasper, J.~C.;

Published by: \apj      Published on: aug

YEAR: 2021     DOI: 10.3847/1538-4357/ac06a1

Interplanetary discontinuities; Solar wind; interplanetary magnetic fields; Magnetohydrodynamics; 820; 1534; 824; 1964; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics; Parker Data Used

Multi-spacecraft study of the solar wind at solar minimum: Dependence on latitude and transient outflows

Context. The recent launches of Parker Solar Probe, Solar Orbiter (SO), and BepiColombo, along with several older spacecraft, have provided the opportunity to study the solar wind at multiple latitudes and distances from the Sun simultaneously. \ Aims: We take advantage of this unique spacecraft constellation, along with low solar activity across two solar rotations between May and July 2020, to investigate how the solar wind structure, including the heliospheric current sheet (HCS), varies with latitude. \ Methods: We visua ...

Laker, R.; Horbury, T.~S.; Bale, S.~D.; Matteini, L.; Woolley, T.; Woodham, L.~D.; Stawarz, J.~E.; Davies, E.~E.; Eastwood, J.~P.; Owens, M.~J.; Brien, H.; Evans, V.; Angelini, V.; Richter, I.; Heyner, D.; Owen, C.~J.; Louarn, P.; Fedorov, A.;

Published by: \aap      Published on: aug

YEAR: 2021     DOI: 10.1051/0004-6361/202140679

Sun: coronal mass ejections (CMEs); Solar wind; Sun: heliosphere; Physics - Space Physics; Astrophysics - Solar and Stellar Astrophysics; Parker Data Used

Plasma Properties, Switchback Patches and Low \ensuremath\alpha-Particle Abundance in Slow Alfv\ enic Coronal Hole Wind at 0.13 au

The Parker Solar Probe (PSP) mission presents a unique opportunity to study the near-Sun solar wind closer than any previous spacecraft. During its fourth and fifth solar encounters, PSP had the same orbital trajectory, meaning that solar wind was measured at the same latitudes and radial distances. We identify two streams measured at the same heliocentric distance (\raisebox-0.5ex\textasciitilde0.13au) and latitude (\raisebox-0.5ex\textasciitilde-3.5$^○$) across these encounters to reduce spatial evolution effects. By com ...

Woolley, Thomas; Matteini, Lorenzo; McManus, Michael; Ber\vci\vc, Laura; Badman, Samuel; Woodham, Lloyd; Horbury, Timothy; Bale, Stuart; Laker, Ronan; Stawarz, Julia; Larson, Davin;

Published by: \mnras      Published on: aug

YEAR: 2021     DOI: 10.1093/mnras/stab2281

Sun: heliosphere; Solar wind; magnetic fields; Parker Data Used

Assessing the Role of Interchange Reconnection in Forming Switchbacks

Abrupt deflections of the magnetic field in the solar wind, so called switchbacks, are frequently observed by the Parker Solar Probe (PSP) during its first two orbits and are believed to play an important role in unveiling the nature of solar corona heating and solar wind acceleration in the inner heliosphere. Many attempts were made recently to understand the nature of switchbacks. However, the origin, propagation, and evolution of switchbacks are still under debate. In this study, we attempt to use the linear theory of ...

Liang, H.; Zank, G.~P.; Nakanotani, M.; Zhao, L.;

Published by: \apj      Published on: aug

YEAR: 2021     DOI: 10.3847/1538-4357/ac0a73

Space plasmas; Solar wind; Solar magnetic fields; Parker Data Used; Solar magnetic reconnection; 1544; 1534; 1503; 1504

Evolution of Interplanetary Coronal Mass Ejection Complexity: A Numerical Study through a Swarm of Simulated Spacecraft

In-situ measurements carried out by spacecraft in radial alignment are critical to advance our knowledge on the evolutionary behavior of coronal mass ejections (CMEs) and their magnetic structures during propagation through interplanetary space. Yet, the scarcity of radially aligned CME crossings restricts investigations on the evolution of CME magnetic structures to a few case studies, preventing a comprehensive understanding of CME complexity changes during propagation. In this Letter, we perform numerical simulations of C ...

Scolini, Camilla; Winslow, Reka; Lugaz, No\; Poedts, Stefaan;

Published by: \apjl      Published on: aug

YEAR: 2021     DOI: 10.3847/2041-8213/ac0d58

Solar coronal mass ejections; Solar wind; Parker Data Used; interplanetary magnetic fields; Corotating streams; 310; 1534; 824; 314; Astrophysics - Solar and Stellar Astrophysics; Physics - Space Physics

Dynamics of nanodust in the vicinity of a stellar corona: Effect of plasma corotation

Context. In the vicinity of the Sun or other stars, the motion of the coronal and stellar wind plasma must include some amount of corotation, which could affect the dynamics of charged dust particles. In the case of the Sun, this region is now investigated in situ by the Parker Solar Probe. Charged dust particles coming from the vicinity of the Sun can also reach, and possibly be detected by, the Solar Orbiter. \ Aims: We use numerical simulations and theoretical models to study the effect of plasma corotation on the motion ...

Czechowski, A.; Mann, I.;

Published by: \aap      Published on: aug

YEAR: 2021     DOI: 10.1051/0004-6361/202141048

Sun: heliosphere; Solar wind; acceleration of particles; Parker Data Used; Interplanetary medium; circumstellar matter

Large Amplitude Switchback Turbulence: Possible Magnetic Velocity Alignment Structures

Switchbacks are widely acknowledged phenomena observed by the Parker Solar Probe and appear to occur in patches. Previous studies focused on the fluctuations at the magnetic reversals. However, the nature of the fluctuations inside the switchbacks remains unknown. Here we utilize the magnetic field data and plasma data measured by the Parker Solar Probe in the first four encounters. We investigate the fluctuations in the switchback intervals of 100 s with $B_R 0$ at every instant and compare them to the fluctuations in the n ...

Wu, Honghong; Tu, Chuanyi; Wang, Xin; Yang, Liping;

Published by: The Astrophysical Journal      Published on: 06/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abec6c

Parker Data Used; Solar wind; interplanetary turbulence; 1534; 830; Astrophysics - Solar and Stellar Astrophysics; Physics - Plasma Physics; Physics - Space Physics

Flux Ropes, Turbulence, and Collisionless Perpendicular Shock Waves: High Plasma Beta Case

With the onset of solar maximum and the expected increased prevalence of interplanetary shock waves, Parker Solar Probe is likely to observe numerous shocks in the next few years. An outstanding question that has received surprisingly little attention has been how turbulence interacts with collisionless shock waves. Turbulence in the supersonic solar wind is described frequently as a superposition of a majority 2D and a minority slab component. We formulate a collisional perpendicular shock-turbulence transmission problem in ...

Zank, G.; Nakanotani, M.; Zhao, L.; Du, S.; Adhikari, L.; Che, H.; le Roux, J.;

Published by: The Astrophysical Journal      Published on: 06/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abf7c8

Interplanetary shocks; interplanetary turbulence; 829; 830; Parker Data Used

A Focused Transport-based Kinetic Fractional Diffusion-advection Equation for Energetic Particle Trapping and Reconnection-related Acceleration by Small-scale Magnetic Flux Ropes in the Solar Wind

Analysis of energetic particle inner heliospheric spacecraft data increasingly suggests the existence of anomalous diffusion phenomena that should be addressed to achieve a better understanding of energetic particle transport and acceleration in the expanding solar wind medium. Related to this is fast-growing observational evidence supporting the long-standing prediction from magnetohydrodynamic (MHD) theory and simulations of the presence of an inner heliospheric, dominant quasi-two-dimensional MHD turbulence component that ...

le Roux, J.; Zank, G.;

Published by: The Astrophysical Journal      Published on: 06/2021

YEAR: 2021     DOI: 10.3847/1538-4357/abf3c6

Interplanetary particle acceleration; Solar wind; Solar magnetic reconnection; 826; 1534; 1504; Parker Data Used

Time evolution of stream interaction region energetic particle spectra in the inner heliosphere

We analyze an energetic proton event associated with a stream interaction region (SIR) that was observed at Parker Solar Probe on day 320 of 2018 when the spacecraft was just 0.34 AU from the Sun. Using the Integrated Science Investigation of the Sun instrument suite, we perform a spectral analysis of the event and show how the observed spectra evolve over the course of the event. We find that the spectra from the first day of the event are much more consistent with local acceleration at a weak compression, while spectra fro ...

Joyce, C.; McComas, D.; Schwadron, N.; Christian, E.; Wiedenbeck, M.; McNutt, R.; Cohen, C.; Leske, R.; Mewaldt, R.; Stone, E.; Labrador, A.; Davis, A.; Cummings, A.; Mitchell, D.; Hill, M.; Roelof, E.; Allen, R.; Szalay, J.; Rankin, J.; Desai, M.; Giacalone, J.; Matthaeus, W.; Bale, S.; Kasper, J.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039330

acceleration of particles; Solar wind; magnetic fields; Parker Data Used

Energetic particle behavior in near-Sun magnetic field switchbacks from PSP

Context. The observation of numerous magnetic switchbacks and associated plasma jets in Parker Solar Probe (PSP) during its first five orbits, particularly near the Sun, has attracted considerable attention. Switchbacks have been found to be systematically associated with correlated reversals in the direction of the propagation of Alfvénic fluctuations, as well as similar reversals of the electron strahl.
Aims: Here we aim to see whether the energetic particles change direction at the magnetic field switchbacks.

Bandyopadhyay, R.; Matthaeus, W.; McComas, D.; Joyce, C.; Szalay, J.; Christian, E.; Giacalone, J.; Schwadron, N.; Mitchell, D.; Hill, M.; McNutt, R.; Desai, M.; Bale, S.; Bonnell, J.; de Wit, Dudok; Goetz, K.; Harvey, P.; MacDowall, R.; Malaspina, D.; Pulupa, M.; Kasper, J.; Stevens, M.;

Published by: Astronomy and Astrophysics      Published on: 06/2021

YEAR: 2021     DOI: 10.1051/0004-6361/202039800

Solar wind; magnetic fields; plasmas; turbulence; instabilities; waves; Parker Data Used



  1      2      3      4      5      6