Parker Solar Probe Bibliography

2019

<p>A statistical analysis of 15,210 electron velocity distribution function (VDF) fits, observed within \textpm2 hr of 52 interplanetary (IP) shocks by the Wind spacecraft near 1 au, is presented. This is the second in a three-part series on electron VDFs near IP shocks. The electron velocity moment statistics for the dense, low-energy core, tenuous, hot halo, and field-aligned beam/strahl are a statistically significant list of values illustrated with both histograms and tabular lists for reference and baselines in future work. Given the large statistics in this investigation, the beam/strahl fit results in the upstream are now the most comprehensive attempt to parameterize the beam/strahl electron velocity moments in the ambient solar wind. The median density, temperature, beta, and temperature anisotropy values for the core(halo)[beam/strahl] components, with subscripts ec(eh)[eb], of all fit results, respectively, are n<sub>ec</sub>(h)[b]\~ 11.3(0.36)[0.17] cm…
2019


<p>The evolution of the magnetic field and plasma quantities inside a coronal mass ejection (CME) with distance are known from statistical studies using data from 1 au monitors, planetary missions, Helios, and Ulysses. This does not cover the innermost heliosphere, below 0.29 au, where no data are yet publicly available. Here, we describe the evolution of the properties of simulated CMEs in the inner heliosphere using two different initiation mechanisms. We compare the radial evolution of these properties with that found from statistical studies based on observations in the inner heliosphere by Helios and MESSENGER. We find that the evolution of the radial size and magnetic field strength is nearly indistinguishable for twisted flux rope from that of writhed CMEs. The evolution of these properties is also consistent with past studies, primarily with recent statistical studies using in situ measurements and with studies using remote observations of CMEs.</p>
2019


<p>The UltraViolet Coronagraph Spectrometer (UVCS) on board the SOlar and Heliospheric Observatory has almost continuously observed, throughout the whole solar cycle 23, the UV solar corona. This work addresses the first-ever statistical analysis of the daily UVCS observations, performed in the O VI channel, of the northern polar coronal hole, between 1.5 and 3 R <sub>☉</sub>, during the period of low solar activity from 1996 April to 1997 December. The study is based on the investigation, at different heights, of the correlation between the variance of the O VI 1031.92 \r A spectral line and the O VI 1031.92, 1037.61 \r A doublet intensity ratio, which are proxies of the kinetic temperature of the O<sup>5+</sup> ions and of the speed of the oxygen component of the fast solar wind, respectively. This analysis allows the clear identification of the sonic point in polar coronal holes at the distance of 1.9 R <sub>☉</sub>. The results show that…
2019


<p>Kinetic Alfv\ en waves (KAWs) are the short-wavelength extension of the magnetohydrodynamics Alfv\ en-wave branch in the case of highly oblique propagation with respect to the background magnetic field. Observations of space plasma show that small-scale turbulence is mainly KAW-like. We apply two theoretical approaches, a collisional two-fluid theory and a collisionless linear kinetic theory, to obtain predictions for the KAW polarizations depending on\&nbsp;<em>β</em>\&nbsp;<sub>p</sub>\&nbsp;(the ratio of the proton thermal pressure to the magnetic pressure) at the ion gyroscale in terms of fluctuations in density, bulk velocity, and pressure. We perform a wavelet analysis of\&nbsp;<em>Magnetospheric Multiscale\&nbsp;</em>magnetosheath measurements and compare the observations with both theories. We find that the two-fluid theory predicts the observations better than the kinetic theory, suggesting that the small-scale…
2019


<p><em>Context</em>. The Parker Solar Probe and the incoming Solar Orbiter mission will provide measurements of solar energetic particle (SEP) events at close heliocentric distances from the Sun. Up to present, the largest data set of SEP events in the inner heliosphere are the observations by the two Helios spacecraft.</p> <p><em>Aims</em>. We re-visit a sample of 15 solar relativistic electron events measured by the Helios mission with the goal of better characterising the injection histories of solar energetic particles and their interplanetary transport conditions at heliocentric distances \&lt;1 AU.</p> <p><em>Methods</em>. The measurements provided by the E6 instrument on board Helios provide us with the electron directional distributions in eight different sectors that we use to infer the detailed evolution of the electron pitch-angle distributions. The results of a Monte Carlo interplanetary transport model…
2019


<p>During the solar minimum, when the Sun is at its least active, the solar wind is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfv\ enic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain; theories and observations suggest that they may originate at the tips of helmet streamers, from interchange reconnection near coronal hole boundaries, or within coronal holes with highly diverging magnetic fields. The heating mechanism required to drive the solar wind is also unresolved, although candidate mechanisms include Alfv\ e;n-wave turbulence, heating by reconnection in nanoflares, ion cyclotron wave heating and acceleration by thermal gradients. At a distance of one astronomical unit, the wind is mixed and evolved, and…
2019


<p>Coronal and solar wind physics have long used plasma fluid models to motivate physical explanations of observations; the hypothesized model is introduced into a fluid simulation to see if observations are reproduced. This procedure is called Verification of Mechanism (VoM) modeling; it is contingent on the self consistency of the closure that made the simulation possible. Inner corona VoMs typically assume weak gradient Spitzer-Braginskii closures. Four prominent coronal VoMs in place for decades are shown to contradict their closure hypotheses, demonstrably shaping coronal and solar wind research. These findings have been possible since 1953. This unchallenged evolution is worth understanding, so that similarly flawed VoMs do not continue to mislead new research. As a first step in this direction, this paper organizes four a posteriori quantitative tests for the purpose of easily screening the physical integrity of a proposed VoM. A fifth screen involving the thermal force,…
2019


<p>By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r = R <sub>0</sub> (neglecting solar gravitation and acceleration by high coronal temperature), the large-scale solar wind magnetic field lines are distorted into a Parker spiral configuration, which is usually simplified to an Archimedes spiral. Using magnetic field observations near Mercury, Venus, and Earth during solar maximum of Solar Cycle 24, we statistically surveyed the Parker spiral angles and obtained the empirical equations of the Archimedes and Parker spirals by fitting the multiple-point results. We found that the solar wind magnetic field configurations are slightly different during different years. Archimedes and Parker spiral configurations are quite different from each other within 1 au. Our results provide empirical Archimedes and Parker spiral equations that depend on the solar wind velocity and the critical…
2019


<p>Remote observations of the solar photospheric light scattered by electrons (the K-corona) and dust (the F-corona or zodiacal light) have been made from the ground during eclipses and from space at distances as small as 0.3 astronomical units to the Sun. Previous observations of dust scattering have not confirmed the existence of the theoretically predicted dust-free zone near the Sun. The transient nature of the corona has been well characterized for large events, but questions still remain (for example, about the initiation of the corona and the production of solar energetic particles) and for small events even its structure is uncertain. Here we report imaging of the solar corona during the first two perihelion passes (0.16-0.25 astronomical units) of the Parker Solar Probe spacecraft, each lasting ten days. The view from these distances is qualitatively similar to the historical views from ground and space, but there are some notable differences. At short elongations, we…
2019


<p>NASA\textquoterights Parker Solar Probe (PSP) spacecraft reached its first perihelion of 35.7 solar radii on 2018 November 5. To aid in mission planning, and in anticipation of the unprecedented measurements to be returned, in late October, we developed a three-dimensional magnetohydrodynamic (MHD) solution for the solar corona and inner heliosphere, driven by the then available observations of the Sun\textquoterights photospheric magnetic field. Our model incorporates a wave-turbulence-driven model to heat the corona. Here, we present our predictions for the structure of the solar corona and the likely in situ measurements that PSP will be returning over the next few months. We infer that, in the days prior to first encounter, PSP was immersed in wind emanating from a well-established, positive-polarity northern polar coronal hole. During the encounter, however, field lines from the spacecraft mapped to a negative-polarity equatorial coronal hole, within which it remained…
2019


<p>NASA\textquoterights Parker Solar Probe mission recently plunged through the inner heliosphere of the Sun to its perihelia, about 24 million kilometres from the Sun. Previous studies farther from the Sun (performed mostly at a distance of 1 astronomical unit) indicate that solar energetic particles are accelerated from a few kiloelectronvolts up to near-relativistic energies via at least two processes: "impulsive" events, which are usually associated with magnetic reconnection in solar flares and are typically enriched in electrons, helium-3 and heavier ions, and "gradual" events, which are typically associated with large coronal-mass-ejection-driven shocks and compressions moving through the corona and inner solar wind and are the dominant source of protons with energies between 1 and 10 megaelectronvolts. However, some events show aspects of both processes and the electron-proton ratio is not bimodally distributed, as would be expected if there were only…
2019


<p>The first definitely interstellar object 1I/\textquoterightOumuamua (previously A/2017 U1) observed in our solar system provides the opportunity to directly study material from an other star system. Can such objects be intercepted? The challenge of reaching the object within a reasonable timeframe is formidable due to its high heliocentric hyperbolic excess velocity of about 26 km/s; much faster than any vehicle yet launched. This paper presents a high-level analysis of potential near-term options for a mission to 1I/\textquoterightOumuamua and potential similar objects. Reaching 1I/\textquoterightOumuamua via a spacecraft launched in a reasonable timeframe of 5-10 years (launch in 2022-2027) requires an Earth departure hyperbolic excess velocity between 33 and 76 km/s for mission durations between 30 and 5 years, respectively. Different mission durations and their velocity requirements are explored with respect to the launch date, assuming direct impulsive transfer to the…
2019


<p>Quasi thermal fluctuations in the Langmuir/upper-hybrid frequency range are pervasively observed in space plasmas including the radiation belt and the ring current region of inner magnetosphere as well as the solar wind. The quasi thermal noise spectroscopy may be employed in order to determine the electron density and temperature as well as to diagnose the properties of energetic electrons when direct measurements are not available. However, when employing the technique, one must carefully take the spacecraft orientation into account. The present paper takes the upper-hybrid and multiple harmonic\textemdashor (n + 1/2)f<sub>ce</sub>\textemdashemissions measured by the Van Allen Probes as an example in order to illustrate how the spacecraft antenna geometrical factor can be incorporated into the theoretical interpretation. This method can in principle be applied to other spacecraft, including the Parker Solar Probe.</p>
2019


<p>The large-scale features of the solar wind are examined in order to predict small-scale features of turbulence in unexplored regions of the heliosphere. The strategy is to examine how system size, or effective Reynolds number Re, varies, and then how this quantity influences observable statistical properties, including intermittency properties of solar wind turbulence. The expectation based on similar hydrodynamics scalings is that the kurtosis, of the small-scale magnetic field increments, will increase with increasing Re. Simple theoretical arguments as well as Voyager observations indicate that effective interplanetary turbulence Re decreases with increasing heliocentric distance. The decrease of scale-dependent magnetic increment kurtosis with increasing heliocentric distance is verified using a newly refined Voyager magnetic field data set. We argue that these scalings continue to much smaller heliocentric distances approaching the Alfv\ en critical region, motivating a…
2019


<p>We investigate the scattering of strahl electrons by microinstabilities as a mechanism for creating the electron halo in the solar wind. We develop a mathematical framework for the description of electron-driven microinstabilities and discuss the associated physical mechanisms. We find that an instability of the oblique fast-magnetosonic/whistler (FM/W) mode is the best candidate for a microinstability that scatters strahl electrons into the halo. We derive approximate analytic expressions for the FM/W instability threshold in two different β <sub>c</sub> regimes, where β <sub>c</sub> is the ratio of the core electrons\textquoteright thermal pressure to the magnetic pressure, and confirm the accuracy of these thresholds through comparison with numerical solutions to the hot-plasma dispersion relation. We find that the strahl-driven oblique FM/W instability creates copious FM/W waves under low-β <sub>c</sub> conditions when U<sub>0s…
2019


<p>A novel technique is presented for describing and visualizing the local topology of the magnetic field using single-spacecraft data in the solar wind. The approach merges two established techniques: the Grad-Shafranov (GS) reconstruction method, which provides a plausible regional two-dimensional magnetic field surrounding the spacecraft trajectory, and the Partial Variance of Increments (PVI) technique that identifies coherent magnetic structures, such as current sheets. When applied to one month of Wind magnetic field data at 1 minute resolution, we find that the quasi-two-dimensional turbulence emerges as a sea of magnetic islands and current sheets. Statistical analysis confirms that current sheets associated with high values of PVI are mostly located between and within the GS magnetic islands, corresponding to X points and internal boundaries. The method shows great promise for visualizing and analyzing single-spacecraft data from missions such as Parker Solar Probe and…
2019


<p>Reliable models of the solar wind in the near-Earth space environment may constrain conditions close to the Sun. This is relevant to NASA\textquoterights contemporary innerheliospheric mission Parker Solar Probe. Among the outstanding issues is how to explain the solar wind temperature isotropy. Perpendicular and parallel proton and electron temperatures near 1 AU are theoretically predicted to be unequal, but in situ observations show quasi-isotropy sufficiently below the instability threshold condition. This has not been satisfactorily explained. The present Letter shows that the dynamical coupling of electrons and protons via collisional processes and instabilities may contribute toward the resolution of this problem.</p>
2019


<p>NASA\textquoterights Parker Solar Probe is currently making a series of close encounters with the Sun. Initial observations from the spacecraft have improved our understanding of both the Sun and its environment.</p>
2019


<p>Surprise magnetic reversals and an unexpectedly fast rotating wind mark the first findings from NASA\textquoterights Parker Solar Probe.</p>
2019


<p>Velocity distributions of particles are key elements in the study of solar wind. The physical mechanisms that regulate their many features are a matter of debate. The present work addresses the subject with a fully analytical method in order to establish the shape of particle velocity distributions in solar wind. The method consists of solving the steady-state kinetic equation for particles and the related fluid equations, with spatial profiles for density and temperature that match general observational data. The model is one-dimensional in configuration-space and two-dimensional in velocity-space, and accounts for large-scale processes, namely, advection, gravity, magnetic mirroring, and the large-scale ambipolar electric field. The findings reported add to the general understanding of regulation of particle distributions in solar wind and to the predictions of their shape in regions restricted for in situ measurements. In particular, the results suggest that fluctuations…
2019


<p>A strong correlation between speed and proton temperature has been observed, across many years, on hourly averaged measurements in the solar wind. Here, we show that this relationship is also observed at a smaller scale on intervals of a few days, within a single stream. Following the radial evolution of a well-defined stream of coronal-hole plasma, we show that the temperature-speed (T-V) relationship evolves with distance, implying that the T-V relationship at 1 au cannot be used as a proxy for that near the Sun. We suggest that this behaviour could be a combination of the anticorrelation between speed and flux-tube expansion factor near the Sun and the effect of a continuous heating experienced by the plasma during the expansion. We also show that the cooling index for the radial evolution of the temperature is a function of the speed. In particular, T<sub>⊥</sub> in faster wind, although higher close to the Sun, decreases more quickly with respect to slower…
2019


<p>Progress in our understanding of the solar corona requires that the results of advanced magnetohydrodynamic models driven by measured magnetic fields, and particularly the underlying heating models, be thoroughly compared with coronal observations. The comparison has so far mainly concerned the global morphology of the corona, synthetic images calculated from the models being compared with observed images. We go one step further by performing detailed quantitative comparisons between the calculated polarized radiance p B using the three-dimensional electron density produced by MHD models and well calibrated polarized images obtained by the Large Angle Spectrometric Coronagraph LASCO-C2 coronagraph complemented by ground-based images when available from the Mauna Loa Solar Observatory Mark IV and K-Cor instruments to extend the comparison to the inner coronal region 1.0 - 2.5 <sub>R☉</sub>, which is inaccessible to C2. We take advantage of the high-resolution and…
2019


Parker-spiral theory predicts that the heliospheric magnetic field (HMF) will have components of opposite polarity radially toward the Sun and tangentially antiparallel to the solar rotation direction (i.e., in Geocentric Solar Ecliptic (GSE) coordinates, with BX/BY<0). This theory explains the average orientation of the HMF very well indeed but does not predict the so-called ortho-gardenhose (hereafter OGH) flux with which is frequently observed. We here study the occurrence and structure of OGH flux, as seen in near-Earth space (heliocentric distance AU) by the Wind and Advanced Composition Explorer (ACE) spacecraft (for 1995-2017, inclusive) and by the Helios-1 and -2 spacecraft at 0.29(for December 1974 to August 1981), in order to evaluate the contributions to OGH flux generation of the various mechanisms and factors that are not accounted for by Parker-spiral theory. We study the loss of OGH flux with increasing averaging timescale between 16seconds and 100 hours and so…
2019


The Parker Solar Probe (PSP) primary mission extends seven years and consists of 24 orbits of the Sun with descending perihelia culminating in a closest approach of similar to 9.8 R-circle dot. In the course of these orbits PSP will pass through widely varying conditions, including anticipated large variations of turbulence properties, such as energy density, correlation scales, and cross helicities. Here we employ global magnetohydrodynamic simulations with self-consistent turbulence transport and heating to preview conditions that will likely be encountered by PSP by assuming suitable boundary conditions at the coronal base. The code evolves large-scale parameters-such as the velocity, magnetic field, and temperature-as well as the turbulent energy density, cross helicity, and correlation scale. These computed quantities provide the basis for evaluating additional useful parameters that are derivable from the primary model outputs. Here we illustrate one such possibility in which…
2019


Accurate reconstruction of global solar-wind structure is essential for connecting remote and in situ observations of solar plasma, and hence understanding formation and release of solar wind. Information can routinely be obtained from photospheric magnetograms, via coronal and solar-wind modelling, and directly from in situ observations, typically at large heliocentric distances (most commonly near 1 AU). Magnetogram-constrained modelling has the benefit of reconstructing global solar-wind structure, but with relatively large spatial and/or temporal errors. In situ observations, on the other hand, make accurate temporal measurements of solar-wind structure, but are highly localised. We here use a data assimilative (DA) approach to combine these two sources of information as a first step towards producing a solar-wind reanalysis dataset that optimally combines model and observation. The physics of solar wind stream interaction is used to extrapolate in heliocentric distance, while the…
2019


In this Letter we propose a practical methodology to interpret future Parker Solar Probe (PSP) turbulent time signals even when Taylor s hypothesis is not valid. By extending Kraichnan s sweeping model used in hydrodynamics we derive the Eulerian spacetime correlation function in magnetohydrodynamic (MHD) turbulence. It is shown that in MHD, the temporal decorrelation of small-scale fluctuations arises from a combination of hydrodynamic sweeping induced by large-scale fluid velocity delta u(0) and by the Alfvenic propagation along the local magnetic field. The resulting temporal part of the spacetime correlation function is used to determine the field-perpendicular wavenumber range
2019


In 1958, Eugene Parker advanced that the solar wind must be produced through the thermal expansion of coronal gas. At the time, he introduced
2019


The Wide-field Imager for the Parker Solar Probe (PSP/WISPR) comprises two telescopes that record white-light total brightness [B] images of the solar corona. Their fields of view cover a widely changing range of heliocentric heights over the 24 highly eccentric orbits planned for the mission. In this work, the capability of PSP/WISPR data to carry out tomographic reconstructions of the three-dimensional (3D) distribution of the coronal electron density is investigated. Based on the precise orbital information of the mission, B-images for Orbits 1, 12, and 24 are synthesized from a 3D magnetohydrodynamic model of the corona. For each orbit, the time series of synthetic images is used to carry out a tomographic reconstruction of the coronal electron density and results are compared with the model. As the PSP perihelion decreases, the range of heights that can be tomographically reconstructed progressively shifts to lower values, and the period required to gather the data decreases. For…
2019


The decay of the solar wind helium-to-hydrogen temperature ratio due to Coulomb thermalization can be used to measure how far from the Sun strong preferential ion heating occurs. Previous work has shown that a zone of preferential ion heating, resulting in mass-proportional temperatures, extends about 20-40 R-circle dot from the Sun on average. Here we look at the motion of the outer boundary of this zone with time and compare it to other physically meaningful distances. We report that the boundary moves in lockstep with the Alfven point over the solar cycle, contracting and expanding with solar activity with a correlation coefficient of better than 0.95 and with an rms difference of 4.23 R-circle dot. Strong preferential ion heating is apparently predominately active below the Alfven surface. To definitively identify the underlying preferential heating mechanisms, it will be necessary to make in situ measurements of the local plasma conditions below the Alfven surface. We predict…
2019


We examine Alfven Wave Solar atmosphere Model (AWSoM) predictions of the first Parker Solar Probe (PSP) encounter. We focus on the 12 day closest approach centered on the first perihelion. AWSoM allows us to interpret the PSP data in the context of coronal heating via Alfven wave turbulence. The coronal heating and acceleration is addressed via outward-propagating low-frequency Alfven waves that are partially reflected by Alfven speed gradients. The nonlinear interaction of these counter-propagating waves results in a turbulent energy cascade. To apportion the wave dissipation to the electron and anisotropic proton temperatures, we employ the results of the theories of linear wave damping and nonlinear stochastic heating as described by Chandran et al. We find that during the first encounter, PSP was in close proximity to the heliospheric current sheet (HCS) and in the slow wind. PSP crossed the HCS two times, at 2018 November 3 UT 01:02 and 2018 November 8 UT 19:09, with perihelion…
2019


The recently launched Parker Solar Probe (PSP) mission is expected to provide unprecedented views of the solar corona and inner heliosphere. In addition to instruments devoted to taking measurements of the local solar wind, the spacecraft carries a visible imager: the Wide-field Imager for Solar PRobe (WISPR). WISPR will take advantage of the proximity of the spacecraft to the Sun to perform local imaging of the near-Sun environment. WISPR will observe coronal structures at high spatial and time resolutions, although the observed plane-of-sky will rapidly change because of the fast transit at the perihelia. We present a concise description of the PSP mission, with particular regard to the WISPR instrument, discussing its main scientific goals, targets of observations, and outlining the possible synergies with current and upcoming space missions.
2019


The spacecraft body of the Parker Solar Probe may interfere with electron measurements in two ways. The first is the presence of several permanent magnets near the Solar Probe Analyzers (SPAN) instruments. The second is the widely varying spacecraft potential. We estimate the effect of these interferences by performing particle tracing simulations on electrons of various energies using a simplified model of the spacecraft potential and measurements of the magnetic fields. From this we can (1) estimate the individual and combined fields of view of the SPAN-E instruments, (2) identify regions of phase space that may be highly distorted, and (3) simulate measurements of the velocity distribution function. We compute density, temperature, and bulk velocity moments of the measured distribution functions and find that a correction table derived from the particle tracing results can be incorporated in the computation to greatly decrease the errors caused by the spacecraft potential and…
2019


The NASA Parker Solar Probe and the ESA Solar Orbiter will explore the source region of the solar wind within 20 solar radii. Their unprecedented in-situ measurements are also expected to shed light on the nature of the F-corona and the existence of a halo of nanodust. Such a dust complex might play an important role in the generation of high-speed nanodust grains and the inner-source pickup ions. A brief summary of previous works on this topic is given here to be followed by a sketch on a plan to integrate MHD simulation of solar wind flow dynamics, orbital motion of charged nanodust and the production of energetic neutral atoms (ENAs) in the interplanetary space.
2019