Parker Solar Probe Bibliography

2020

<p>Electrostatic analyzers of different designs have been used since the earliest days of the space age, beginning with the very earliest solar-wind measurements made by Mariner 2 en route to Venus in 1962. The Parker Solar Probe (PSP) mission, NASA\textquoterights first dedicated mission to study the innermost reaches of the heliosphere, makes its thermal plasma measurements using a suite of instruments called the Solar Wind Electrons, Alphas, and Protons (SWEAP) investigation. SWEAP\textquoterights electron PSP Analyzer (Solar Probe ANalyzer-Electron (SPAN-E)) instruments are a pair of top-hat electrostatic analyzers on PSP that are capable of measuring the electron distribution function in the solar wind from 2 eV to 30 keV. For the first time, in situ measurements of thermal electrons provided by SPAN-E will help reveal the heating and acceleration mechanisms driving the evolution of the solar wind at the points of acceleration and heating, closer than ever before to the Sun…
2020


<p>Solar Probe Cup (SPC) is a Faraday cup instrument on board NASA\textquoterights Parker Solar Probe (PSP) spacecraft designed to make rapid measurements of thermal coronal and solar wind plasma. The spacecraft is in a heliocentric orbit that takes it closer to the Sun than any previous spacecraft, allowing measurements to be made where the coronal and solar wind plasma is being heated and accelerated. The SPC instrument was designed to be pointed directly at the Sun at all times, allowing the solar wind (which is flowing primarily radially away from the Sun) to be measured throughout the orbit. The instrument is capable of measuring solar wind ions with an energy between 100 and 6000 V (protons with speeds from 139 to 1072 km s<sup>-1</sup>). It also measures electrons with an energy/charge between 100 and 1500 V. SPC has been designed to have a wide dynamic range that is capable of measuring protons and alpha particles at the closest perihelion (9.86 solar radii…
2020


<p>he long-term evolution of the Sun\textquoterights rotation period cannot be directly observed, and is instead inferred from trends in the measured rotation periods of other Sun-like stars. Assuming the Sun spins down as it ages, following rotation rate proportional to age(-1/2), requires the current\&nbsp;solar\&nbsp;angular momentum (AM) loss rate to be around 6 x 10(30)erg. Magnetohydrodynamic models, and previous observations of the\&nbsp;solar\&nbsp;wind (from the Helios and Wind spacecraft), generally predict a values closer to 1 x 10(30)erg or 3 x 10(30)erg, respectively. Recently, the\&nbsp;Parker\&nbsp;Solar\&nbsp;Probe\&nbsp;(PSP) observed tangential\&nbsp;solar\&nbsp;wind speeds as high as similar to 50 km s(-1)in a localized region of the inner heliosphere. If such rotational flows were prevalent throughout the corona, it would imply that the\&nbsp;solar\&nbsp;wind AM-loss rate is an order of magnitude larger than all…
2020


<p>Several fast solar wind streams and stream interaction regions (SIRs) were observed by the Parker Solar Probe (PSP) during its first orbit (2018 September-2019 January). During this time, several recurring SIRs were also seen at 1 au at both L1 (Advanced Composition Explorer (ACE) and Wind) and the location of the Solar Terrestrial Relations Observatory-Ahead (STEREO-A). In this paper, we compare four fast streams observed by PSP at different radial distances during its first orbit. For three of these fast stream events, measurements from L1 (ACE and Wind) and STEREO-A indicated that the fast streams were observed by both PSP and at least one of the 1 au monitors. Our associations are supported by simulations made by the ENLIL model driven by GONG-(ADAPT-)WSA, which allows us to contextualize the inner heliospheric conditions during the first orbit of PSP. Additionally, we determine which of these fast streams are associated with an SIR and characterize the SIR properties for…
2020


<p>In the first orbit of the Parker Solar Probe (PSP), in situ thermal plasma and magnetic field measurements were collected as close as 35 R<sub>Sun</sub> from the Sun, an environment that had not been previously explored. During the first orbit of PSP, the spacecraft flew through a streamer blowout coronal mass ejection (SBO-CME) on 2018 November 11 at 23:50 UT as it exited the science encounter. The SBO-CME on November 11 was directed away from the Earth and was not visible by L1 or Earth-based telescopes due to this geometric configuration. However, PSP and the STEREO-A spacecraft were able to make observations of this slow (v ≈ 380 km s<sup>-1</sup>) SBO-CME. Using the PSP data, STEREO-A images, and Wang-Sheeley-Arge model, the source region of the CME is found to be a helmet streamer formed between the northern polar coronal hole and a mid-latitude coronal hole. Using the YGUAZU-A model, the propagation of the CME is traced from the source at the…
2020


<p>Parker Solar Probe (PSP) observed a large variety of Alfv\ enic fluctuations in the fast and slow solar wind flow during its two perihelia. The properties of Alfv\ enic solar wind turbulence have been studied for decades in the near-Earth environment. A spectral index of -5/3 or -2 for magnetic field fluctuations has been observed using spacecraft measurements, which can be explained by turbulence theories of nearly incompressible magnetohydrodynamics (NI MHD) or critical balance. In this study, a rigorous search of field-aligned solar wind is applied to PSP measurements for the first time, which yields two events in the apparently slow solar wind. The parallel spectra of the magnetic fluctuations in the inertial range show a <em>k</em>\&nbsp;-5/3\&nbsp;||\&nbsp;\&nbsp;k||-5/3 power law. Probability distributions of the magnetic field show that these events are not contaminated by intermittent structures, which, according to previous studies, are…
2020


<p>We present initial results from the Radio Frequency Spectrometer, the high-frequency component of the FIELDS experiment on the Parker Solar Probe (PSP). During the first PSP solar encounter (2018 November), only a few small radio bursts were observed. During the second encounter (2019 April), copious type III radio bursts occurred, including intervals of radio storms where bursts occurred continuously. In this paper, we present initial observations of the characteristics of type III radio bursts in the inner heliosphere, calculating occurrence rates, amplitude distributions, and spectral properties of the observed bursts. We also report observations of several bursts during the second encounter that display circular polarization in the right-hand-polarized sense, with a degree of polarization of 0.15-0.38 in the range from 8 to 12 MHz. The degree of polarization can be explained either by depolarization of initially 100\% polarized o-mode emission or by direct generation of…
2020


<p>The distribution of spacecraft in the inner heliosphere during 2019 March enabled comprehensive observations of an interplanetary coronal mass ejection (ICME) that encountered Parker Solar Probe (PSP) at 0.547 au from the Sun. This ICME originated as a slow (\~311 km s<sup>-1</sup>) streamer blowout (SBO) on the Sun as measured by the white-light coronagraphs on board the Solar TErrestrial RElations Observatory-A and the Solar and Heliospheric Observatory. Despite its low initial speed, the passage of the ICME at PSP was preceded by an anisotropic, energetic (≲100 keV/n) ion enhancement and by two interplanetary shocks. The ICME was embedded between slow (\~300 km s<sup>-1</sup>) solar wind and a following, relatively high-speed (\~500 km s<sup>-1</sup>), stream that most likely was responsible for the unexpectedly short (based on the SBO speed) ICME transit time of less than \~56 hr between the Sun and PSP, and for the formation of the…
2020


<p>Observations by the Parker Solar Probe mission of the solar wind at \~35.7 solar radii reveal the existence of whistler wave packets with frequencies below 0.1 f<sub>ce</sub> (20-80 Hz in the spacecraft frame). These waves often coincide with local minima of the magnetic field magnitude or with sudden deflections of the magnetic field that are called switchbacks. Their sunward propagation leads to a significant Doppler frequency downshift from 200-300 to 20-80 Hz (from 0.2 to 0.5 f<sub>ce</sub>). The polarization of these waves varies from quasi-parallel to significantly oblique with wave normal angles that are close to the resonance cone. Their peak amplitude can be as large as 2-4 nT. Such values represent approximately 10\% of the background magnetic field, which is considerably more than what is observed at 1 au. Recent numerical studies show that such waves may potentially play a key role in breaking the heat flux and scattering the Strahl…
2020


<p>The Integrated Science Investigation of the Sun (IS☉IS) instrument suite on the Parker Solar Probe (PSP) spacecraft is making in situ observations of energetic ions and electrons closer to the Sun than any previous mission. Using data collected during its first two orbits, which reached perihelion distances of 0.17 au, we have searched for \&nbsp;3\&nbsp;He\&nbsp;3He -rich solar energetic particle (SEP) events under very quiet solar minimum conditions. On 2019-110-111 (April 20-21), \&nbsp;3\&nbsp;He\&nbsp;3He -rich SEPs were observed at energies near 1 MeV nucleon<sup>-1</sup> in association with energetic protons, heavy ions, and electrons. This activity was also detected by the Ultra-Low-Energy Isotope Spectrometer and the Electron, Proton, and Alpha Monitor instruments on the Advanced Composition Explorer (ACE) spacecraft located near Earth, 0.99 au from the Sun. At that time, PSP and ACE were both magnetically connected to locations…
2020


<p>One of the most striking observations made by Parker Solar Probe during its first solar encounter is the omnipresence of rapid polarity reversals in a magnetic field that is otherwise mostly radial. These so-called switchbacks strongly affect the dynamics of the magnetic field. We concentrate here on their macroscopic properties. First, we find that these structures are self-similar, and have neither a characteristic magnitude, nor a characteristic duration. Their waiting time statistics show evidence of aggregation. The associated long memory resides in their occurrence rate, and is not inherent to the background fluctuations. Interestingly, the spectral properties of inertial range turbulence differ inside and outside of switchback structures; in the latter the 1/f range extends to higher frequencies. These results suggest that outside of these structures we are in the presence of lower-amplitude fluctuations with a shorter turbulent inertial range. We conjecture that these…
2020


<p>Switchbacks (rotations of the magnetic field) are observed on the Parker Solar Probe. Their evolution, content, and plasma effects are studied in this paper. The solar wind does not receive a net acceleration from switchbacks that it encountered upstream of the observation point. The typical switchback rotation angle increased with radial distance. Significant Poynting fluxes existed inside, but not outside, switchbacks, and the dependence of the Poynting flux amplitude on the switchback radial location and rotation angle is explained quantitatively as being proportional to (B sin(θ))<sup>2</sup>. The solar wind flow inside switchbacks was faster than that outside due to the frozen-in ions moving with the magnetic structure at the Alfv\ en speed. This energy gain results from the divergence of the Poynting flux from outside to inside the switchback, which produces a loss of electromagnetic energy on switchback entry and recovery of that energy on exit, with the…
2020


<p>In contrast with the fast solar wind, which originates in coronal holes, the source of the slow solar wind is still debated. Often intermittent and enriched with low first ionization potential elements\textemdashakin to what is observed in closed coronal loops\textemdashthe slow wind could form in bursty events nearby helmet streamers. Slow winds also exhibit density perturbations that have been shown to be periodic and could be associated with flux ropes ejected from the tip of helmet streamers, as shown recently by the WISPR white-light imager on board Parker Solar Probe (PSP). In this work, we propose that the main mechanism controlling the release of flux ropes is a flow-modified tearing mode at the heliospheric current sheet (HCS). We use magnetohydrodynamic simulations of the solar wind and corona to reproduce realistic configurations and outflows surrounding the HCS. We find that this process is able to explain long (\~10-20 hr) and short (\~1-2 hr) timescales of…
2020


<p>On 2019 April 5, while the Parker Solar Probe was at its 35 solar radius perihelion, the data set collected at 293 samples/s contained more than 10,000 examples of spiky electric-field-like structures with durations less than 200 milliseconds and amplitudes greater than 10 mV m<sup>-1</sup>. The vast majority of these events were caused by plasma turbulence. Defining dust events as those with similar, narrowly peaked, positive, and single-ended signatures resulted in finding 135 clear dust events, which, after correcting for the low detection efficiently, resulted in an estimate consistent with the 1000 dust events expected from other techniques. Defining time domain structures (TDS) as those with opposite polarity signals in the opposite antennas resulted in finding 238 clear TDS events which, after correcting for the detection efficiency, resulted in an estimated 500-1000 TDS events on this day. The TDS electric fields were bipolar, as expected for electron…
2020


<p>The Parker Solar Probe (PSP) achieved its first orbit perihelion on 2018 November 6, reaching a heliocentric distance of about 0.165 au (35.55 R<sub>☉</sub>). Here, we study the evolution of fully developed turbulence associated with the slow solar wind along the PSP trajectory between 35.55 R<sub>☉</sub> and 131.64 R<sub>☉</sub> in the outbound direction, comparing observations to a theoretical turbulence transport model. Several turbulent quantities, such as the fluctuating kinetic energy and the corresponding correlation length, the variance of density fluctuations, and the solar wind proton temperature are determined from the PSP Solar Wind Electrons Alphas and Protons (SWEAP) plasma data along its trajectory between 35.55 R<sub>☉</sub> and 131.64 R<sub>☉</sub>. The evolution of the PSP derived turbulent quantities are compared to the numerical solutions of the nearly incompressible magnetohydrodynamic (NI MHD)…
2020


<p>Context. The launch of\&nbsp;Parker\&nbsp;Solar\&nbsp;Probe\&nbsp;(PSP) in 2018, followed by\&nbsp;Solar\&nbsp;Orbiter (SO) in February 2020, has opened a new window in the exploration of\&nbsp;solar\&nbsp;magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to\&nbsp;solar\&nbsp;observations, such as the\&nbsp;Solar\&nbsp;Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-wavelength observations including the DKIST observatory that has just seen first light, promise to revolutionize our understanding of the\&nbsp;solar\&nbsp;atmosphere and of\&nbsp;solar\&nbsp;activity, from the generation and emergence of the Sun\textquoterights magnetic field to the creation of the\&nbsp;solar\&nbsp;wind and the acceleration of\&nbsp;solar\&nbsp;energetic…
2020


<p>On August 12, 2018, NASA launched the Parker Solar Probe (PSP) to explore regions very near the Sun. Losing enough energy and angular momentum to approach the Sun requires either an impractical amount of fuel or a maneuver called a gravity assist. A gravity assist is essentially an elastic collision with a massive, moving target\textemdashRutherford scattering from a planet. Gravity assists are often used to gain energy in missions destined for the outer solar system, but they can also be used to lose energy. Reaching an orbit sufficiently close to the Sun requires that PSP undergoes not one but seven successive gravity assists off the planet Venus. This simple description poses several conceptual challenges to the curious physics student. Why is it so much more challenging to get to the Sun than to leave the Solar System? Why does it take more than one gravity assist to achieve this, and why does it require seven? Would it be more effective to use Mercury instead of Venus?…
2020


<p>Detection of the solar wind speed near the Sun is significant in understanding the heating and acceleration of the solar wind. Cometary plasma tails have long been used as natural probes for solar wind speed; previous solar wind speed estimates via plasma tails, however, were based on comet images from a single viewpoint, and the projection effect may influence the result. Using stereoscopic observations from the Solar Terrestrial Relations Observatory and the Solar and Heliospheric Observatory, we three-dimensionally reconstruct the plasma tails of three comets C/2012 S1 (ISON), C/2010 E6, and C/2011 W3 (Lovejoy) and infer the ambient solar wind speed. The first comet is located between 3.5 and 6 solar radii (Rs) away from the Sun at high latitudes; the estimated solar wind speed is about 300-500 km s<sup>-1</sup>. The second comet is located within 10 Rs and about 20\textdegree away from the ecliptic; the estimated solar wind speed is about 200-320 km s<sup…
2020


<p>Turbulence, a ubiquitous phenomenon in interplanetary space, is crucial for the energy conversion of space plasma at multiple scales. This work focuses on the propagation, polarization, and wave composition properties of the\&nbsp;solar\&nbsp;wind turbulence within 0.3 au, and its variation with heliocentric distance at magnetohydrodynamic scales (from 10 s to 1000 s in the spacecraft frame). We present the probability density function of propagation wavevectors (PDF (k(parallel to),k)) for\&nbsp;solar\&nbsp;wind turbulence within 0.3 au for the first time: (1) wavevectors cluster quasi-(anti-)parallel to the local background magnetic field forkd(i) \&lt; 0.02, whered(i)is the ion inertial length; (2) wavevectors shift to quasi-perpendicular directions forkd(i) \&gt; 0.02. Based on our wave composition diagnosis, we find that: the outward/anti-sunward Alfven mode dominates over the whole range of scales and distances, the spectral energy density…
2020


<p>Characterizing the large-scale structure and plasma properties of the inner corona is crucial to understanding the source and subsequent expansion of the solar wind and related space weather effects. Here, we apply a new coronal rotational tomography method, along with a method to narrow streamers and refine the density estimate, to COR2A/Solar Terrestrial Relations Observatory observations from a period near solar minimum and maximum, gaining density maps for heights between 4 and 8R<sub>☉</sub>. The coronal structure is highly radial at these heights, and the streamers are very narrow: in some regions, only a few degrees in width. The mean densities of streamers is almost identical between solar minimum and maximum. However, streamers at solar maximum contain around 50\% more total mass due to their larger area. By assuming a constant mass flux, and constraints on proton flux measured by Parker Solar Probe (PSP), we estimate an outflow speed within solar minimum…
2020


<p>The Wide-field Imager for Solar Probe (WISPR) on board the Parker Solar Probe (PSP) observed a coronal mass ejection (CME) on 2018 November 1, the first day of the initial PSP encounter. The speed of the CME, approximately 200-300 km s<sup>-1</sup> in the WISPR field of view, is typical of slow, streamer blowout CMEs. This event was also observed by the Large Angle and Spectrometric Coronagraph Experiment (LASCO) coronagraphs. WISPR and LASCO view remarkably similar structures that enable useful cross-comparison between the two data sets as well as stereoscopic imaging of the CME. An analysis is extended to lower heights by linking the white-light observations to extreme ultraviolet (EUV) data from the Atmospheric Imaging Assembly, which reveal a structure that erupts more than a full day earlier before the CME finally gathers enough velocity to propagate outward. This EUV feature appears as a brightness enhancement in cooler temperatures, such as 171 \r A, but as…
2020


During its first solar encounter, the Parker Solar Probe (PSP) acquired unprecedented up-close imaging of a small coronal mass ejection (CME) propagating in the forming slow solar wind. The CME originated as a cavity imaged in extreme ultraviolet that moved very slowly (<50 km s(-1)) to 3-5 solar radii (R), where it then accelerated to supersonic speeds. We present a new model of an erupting flux rope (FR) that computes the forces acting on its expansion with a computation of its internal magnetic field in three dimensions. The latter is accomplished by solving the Grad-Shafranov equation inside two-dimensional cross sections of the FR. We use this model to interpret the kinematic evolution and morphology of the CME imaged by PSP. We investigate the relative role of toroidal forces, momentum coupling, and buoyancy for different assumptions on the initial properties of the CME. The best agreement between the dynamic evolution of the observed and simulated FR is obtained by modeling…
2020


Field and plasma variations during the first perihelion pass of the Parker Solar Probe (PSP) from 53 into 35 solar radii (R-S) from the Sun and over a frequency range in the spacecraft frame (f(SC)) from 0.0002 to 0.2 Hz are decomposed into constituent magnetohydrodynamic (MHD) modes. The analysis operates on measurements of the MHD variables recorded between impulsive, large amplitude rotations of the magnetic field to reveal the dominance of a broad spectrum of shear Alfven waves propagating antiparallel (backward) to the background magnetic field (B-0) with a significant fraction of spectral energy density in the backward slow mode and, to a lesser extent, fast mode waves. While all three MHD modes provide Poynting flux directed outward from the Sun the impulsive rotations of B-0 from inward to outward radial orientations provide intervals of outward and inward propagation in the plasma frame, respectively. This morphology is suggestive of outward wave propagation from a near Sun…
2020


We present a technique for deriving the temperature anisotropy of solar wind protons observed by the Parker Solar Probe (PSP) mission in the near-Sun solar wind. The radial proton temperature measured by the Solar Wind Electrons, Alphas, and Protons (SWEAP) Solar Probe Cup is compared with the orientation of local magnetic field measured by the FIELDS fluxgate magnetometer, and the proton temperatures parallel and perpendicular to the magnetic field are extracted. This procedure is applied to different data products, and the results are compared and optimum timescales for data selection and trends in the uncertainty in the method are identified. We find that the moment-based proton temperature anisotropy is more physically consistent with the expected limits of the mirror and firehose instabilities, possibly because the nonlinear fits do not capture a significant non-Maxwellian shape to the proton velocity distribution function near the Sun. The proton beam has a small effect on total…
2020


The Parker Solar Probe mission has shown the ubiquitous presence of strong magnetic field deflections, namely switchbacks, during its first perihelion where it was embedded in a highly Alfvenic slow stream. Here, we study the turbulent magnetic fluctuations around ion scales in three intervals characterized by a different switchback activity, identified by the behavior of the magnetic field radial component, B-r. Quiet (B-r does not show significant fluctuations), weakly disturbed (B-r has strong fluctuations but no reversals), and highly disturbed (B-r has full reversals) periods also show different behavior for ion quantities. However, the spectral analysis shows that each stream is characterized by the typical Kolmogorov/Kraichnan power law in the inertial range, followed by a break around the characteristic ion scales. This frequency range is characterized by strong intermittent activity, with the presence of noncompressive coherent events, such as current sheets, vortex-like…
2020


We use Parker Solar Probe (PSP) in situ measurements to analyze the characteristics of solar wind turbulence during the first solar encounter covering radial distances between 35.7R and 41.7R. In our analysis we isolate so-called switchback (SB) intervals (folded magnetic field lines) from nonswitchback (NSB) intervals, which mainly follow the Parker spiral field. Using a technique based on conditioned correlation functions, we estimate the power spectra of Elsasser, magnetic, and bulk velocity fields separately in the SB and NSB intervals. In comparing the turbulent energy spectra of the two types of intervals, we find the following characteristics: (1) The decorrelation length of the backward-propagating Elsasser field z(-) is larger in the NSB intervals than the one in the SB intervals; (2) the magnetic power spectrum in SB intervals is steeper, with spectral index close to -5/3, than in NSB intervals, which have a spectral index close to -3/2; (3) both SB and NSB turbulence are…
2020


In situ measurements of the solar wind have been available for almost 60 years, and in that time plasma physics simulation capabilities have commenced and ground-based solar observations have expanded into space-based solar observations. These observations and simulations have yielded an increasingly improved knowledge of fundamental physics and have delivered a remarkable understanding of the solar wind and its complexity. Yet there are longstanding major unsolved questions. Synthesizing inputs from the solar wind research community, nine outstanding questions of solar wind physics are developed and discussed in this commentary. These involve questions about the formation of the solar wind, about the inherent properties of the solar wind (and what the properties say about its formation), and about the evolution of the solar wind. The questions focus on (1) origin locations on the Sun, (2) plasma release, (3) acceleration, (4) heavy-ion abundances and charge states, (5) magnetic…
2020


Reconnection between pairs of solar magnetic flux elements, one open and the other a closed loop, is theorized to be a crucial process for both maintaining the structure of the corona and producing the solar wind. This interchange reconnection is expected to be particularly active at the open-closed boundaries of coronal holes (CHs). Previous analysis of solar wind data at 1 au indicated that peaks in the flux of suprathermal electrons at slow-fast stream interfaces may arise from magnetic connection to the CH boundary, rather than dynamic effects such as compression. Further, offsets between the peak and stream interface locations are suggested to be the result of interchange reconnection at the source. As a preliminary test of these suggestions, we analyse two solar wind streams observed during the first Parker Solar Probe (PSP) perihelion encounter, each associated with equatorial CH boundaries (one leading and one trailing with respect to rotation). Each stream features a peak…
2020


The aim of this study is to investigate through modelling how sputtering by impacting solar wind ions influences the lifetime of dust particles in the inner heliosphere near the Sun. We consider three typical dust materials, silicate, Fe0.4Mg0.6O, and carbon, and describe their sputtering yields based on atomic yields given by the Stopping and Range of Ions in Matter (SRIM) package. The influence of the solar wind is characterized by plasma density, solar wind speed, and solar wind composition, and we assume for these parameter values that are typical for fast solar wind, slow solar wind, and coronal mass ejection (CME) conditions to calculate the sputtering lifetimes of dust. To compare the sputtering lifetimes to typical sublimation lifetimes, we use temperature estimates based on Mie calculations and material vapour pressure derived with the MAGMA chemical equilibrium code. We also compare the sputtering lifetimes to the Poynting-Robertson lifetime and to the collision lifetime. We…
2020


Small-scale magnetic flux ropes (SFRs) are a type of structure in the solar wind that possess helical magnetic field lines. In a recent report we presented the radial variations of the properties of SFRs from 0.29 to 8 au using in situ measurements from the Helios, Advanced Composition Explorer/WIND (ACE/Wind), Ulysses, and Voyager spacecrafts. With the launch of the Parker Solar Probe (PSP), we extend our previous investigation further into the inner heliosphere. We apply a Grad-Shafranov-based algorithm to identify SFRs during the first two PSP encounters. We find that the number of SFRs detected near the Sun is much less than at larger radial distances, where magnetohydrodynamic (MHD) turbulence may act as the local source to produce these structures. The prevalence of Alfvenic structures significantly suppresses the detection of SFRs at closer distances. We compare the SFR event list with other event identification methods, yielding a dozen well-matched events. The cross-section…
2020


The Parker Solar Probe successfully makes electric field measurements over the frequency range of DC-100 Hz, thanks to the remarkable symmetry of the antennas with respect to sunlight and the mostly radial magnetic field. Calibration of the electric field measurement is described. Sampled electric and magnetic field data are utilized to determine wave modes of whistlers and Alfven-ion-cyclotron waves. In the course of such determinations, the electric field effective antenna length was found to vary with frequency from similar to 1 m at low frequencies to essentially the antenna half-geometric length of 3.5 m above 20 Hz. Properties of the low-frequency electric field power as functions of frequency and radial distance are determined. There is a plateau in the electric field power spectrum above similar to 10 Hz, which is due to the power in waves exceeding the turbulent cascade power above that frequency. This wave power decreases by one to two orders of magnitude from 35 to 50 solar…
2020


TheWide-field Imager for Solar Probe(WISPR) onboard theParker Solar Probe(PSP), observing in white light, has a fixed angular field of view, extending from 13.5(circle)to 108(circle)from the Sun and approximately 50(circle)in the transverse direction. Because of the highly elliptical orbit of PSP, the physical extent of the imaged coronal region varies directly as the distance from the Sun, requiring new techniques for analysis of the motions of observed density features. Here, we present a technique for determining the 3D trajectory of CMEs and other coronal ejecta moving radially at a constant velocity by first tracking the motion in a sequence of images and then applying a curve-fitting procedure to determine the trajectory parameters (distance vs. time, velocity, longitude, and latitude). To validate the technique, we have determined the trajectory of two CMEs observed by WISPR that were also observed by another white-light imager, either theSolar and Heliophysics Observatory(SOHO…
2020


The interpretation of multi-spacecraft heliospheric observations and three-dimensional reconstruction of the structured and evolving solar wind with propagating and interacting coronal mass ejections (CMEs) is a challenging task. Numerical simulations can provide global context and suggest what may and may not be observed. The Community Coordinated Modeling Center (CCMC) provides both mission science and space weather support to all heliospheric missions. Currently, this is realized by real-time simulations of the corotating and transient disturbances by the WSA-ENLIL-Cone model. We have simulated the heliospheric space weather relevant to the Parker Solar Probe (PSP) mission since 2018 September and provided numerical results to our colleagues analyzing in situ measurements published in the ApJS Special Issue. In this paper, we do not analyze PSP data, but we present recent updates in simulating the background solar wind and compare them with an existing operational model around the…
2020


During Parker Solar Probe s first two orbits, there are widespread observations of rapid magnetic field reversals known as switchbacks. These switchbacks are extensively found in the near-Sun solar wind, appear to occur in patches, and have possible links to various phenomena such as magnetic reconnection near the solar surface. As switchbacks are associated with faster plasma flows, we questioned whether they are hotter than the background plasma and whether the microphysics inside a switchback is different to its surroundings. We have studied the reduced distribution functions from the Solar Probe Cup instrument and considered time periods with markedly large angular deflections to compare parallel temperatures inside and outside switchbacks. We have shown that the reduced distribution functions inside switchbacks are consistent with a rigid velocity space rotation of the background plasma. As such, we conclude that the proton core parallel temperature is very similar inside and…
2020


In this work a weak-turbulence closure is used to determine the structure of the two-time power spectrum of weak magnetohydrodynamic (MHD) turbulence from the nonlinear equations describing the dynamics. The two-time energy spectrum is a fundamental quantity in turbulence theory from which most statistical properties of a homogeneous turbulent system can be derived. A closely related quantity, obtained via a spatial Fourier transform, is the two-point two-time correlation function describing the space-time correlations arising from the underlying dynamics of the turbulent fluctuations. Both quantities are central in fundamental turbulence theories as well as in the analysis of turbulence experiments and simulations. However, a first-principles derivation of these quantities has remained elusive due to the statistical closure problem, in which dynamical equations for correlations at order n depend on correlations of order n + 1. The recent launch of the Parker Solar Probe (PSP), which…
2020


Recent reports of the first data from Parker Solar Probe (PSP) have pointed to a series of links, correlations or anti-correlations between the solar wind bulk speed (VSW) and physical properties of plasma particles from less than 0.25 AU in the corona. In the present paper, we describe corresponding and additional links of solar wind properties, at 0.4 AU and 1.0 AU, in an attempt to complement the PSP data and understand their evolution. A detailed analysis is carried out for the main electron populations, comparing the low-energy (thermal) core and the collisionless suprathermal halo. We show that the anti-correlation observed at 0.4 AU between VSW and the number density (average value) is maintained also at 1 AU for both the core and halo electrons. On the contrary, only the core electrons manifest a clear anti-correlation of the temperature with VSW, while the halo temperature does not vary much. We also describe the ions, protons and helium, which have a more reduced mobility…
2020