Parker Solar Probe Bibliography

2021

The addition of Parker Solar Probe (PSP) to the Heliophysics System Observatory has allowed for the unprecedented ability to study Corotating Interaction Regions (CIRs) at multiple radial distances without significant temporal/longitudinal variations. On September 19, 2019, PSP observed a CIR at ∼0.5 au when it was nearly radially aligned with the Solar Terrestrial Relations Observatory Ahead (STEREO A) spacecraft at ∼1 au, allowing for an unambiguous assessment of the radial evolution of a single CIR. Bulk plasma and magnetic field signatures of the CIR evolve in a fashion characteristic to previous observations; however, the suprathermal ions are enhanced over a larger longitudinal range at PSP than at STEREO A, although at much lower intensities. The longitudinal spread appears to be largely a consequence of magnetic field line topology at CIRs between the compressed slow solar wind upstream and high speed stream following the CIR, underscoring the importance of the large scale…
2021


Magnetic reconnection has been suggested to play an important role in the dynamics and energetics of plasma turbulence by spacecraft observations, simulations, and theory over the past two decades, and recently, by magnetosheath observations of MMS. A new method based on magnetic flux transport (MFT) has been developed to identify reconnection activity in turbulent plasmas. This method is applied to a gyrokinetic simulation of two-dimensional (2D) plasma turbulence. Results on the identification of three active reconnection X-points are reported. The first two X-points have developed bidirectional electron outflow jets. Beyond the category of electron-only reconnection, the third X-point does not have bidirectional electron outflow jets because the flow is modified by turbulence. In all cases, this method successfully identifies active reconnection through clear inward and outward flux transport around the X-points. This transport pattern defines reconnection and produces a new…
2021


Spectroscopic observations at extreme- and far-ultraviolet wavelengths have revealed systematic upflows in the solar transition region and corona. These upflows are best seen in the network structures of the quiet Sun and coronal holes, boundaries of active regions, and dimming regions associated with coronal mass ejections. They have been intensively studied in the past two decades because they are likely to be closely related to the formation of the solar wind and heating of the upper solar atmosphere. We present an overview of the characteristics of these upflows, introduce their possible formation mechanisms, and discuss their potential roles in the mass and energy transport in the solar atmosphere. Although past investigations have greatly improved our understanding of these upflows, they have left us with several outstanding questions and unresolved issues that should be addressed in the future. New observations from the Solar Orbiter mission, the Daniel K. Inouye Solar…
2021


Depressions in magnetic field strength, commonly referred to as magnetic holes, are observed ubiquitously in space plasmas. Subproton scale magnetic holes with spatial scales smaller than or on the order of a proton gyroradius, are likely supported by electron current vortices, rotating perpendicular to the ambient magnetic field. While there are numerous accounts of subproton scale magnetic holes within the Earth s magnetosphere, there are few, if any, reported observations in other space plasma environments. We present the first evidence of subproton scale magnetic holes in the Venusian magnetosheath. During Parker Solar Probe s first Venus Gravity Assist, the spacecraft crossed the planet s bow shock and subsequently observed the Venusian magnetosheath. The FIELDS instrument suite onboard the spacecraft achieved magnetic and electric field measurements of magnetic hole structures. The electric fields associated with magnetic depressions are consistent with electron current vortices…
2021


Abstract Depressions in magnetic field strength, commonly referred to as magnetic holes, are observed ubiquitously in space plasmas. Subproton-scale magnetic holes with spatial scales smaller than or on the order of a proton gyroradius, are likely supported by electron current vortices, rotating perpendicular to the ambient magnetic field. While there are numerous accounts of subproton-scale magnetic holes within the Earth’s magnetosphere, there are few, if any, reported observations in other space plasma environments. We present the first evidence of subproton-scale magnetic holes in the Venusian magnetosheath. During Parker Solar Probe’s first Venus Gravity Assist, the spacecraft crossed the planet’s bow shock and subsequently observed the Venusian magnetosheath. The FIELDS instrument suite onboard the spacecraft achieved magnetic and electric field measurements of magnetic hole structures. The electric fields associated with magnetic depressions are consistent with electron current…
2021


We provide a simple geometric explanation for the source of switchbacks and associated large and one-sided transverse flows in the solar wind observed by the Parker Solar Probe (PSP). The more radial, sub-Parker spiral structure of the heliospheric magnetic field observed previously by Ulysses, ACE, and STEREO is created within rarefaction regions where footpoint motion from the source of fast into slow wind at the Sun creates a magnetic fieldline connection across solar wind speed shear. Conversely, when footpoints move from the source of slow wind into faster wind, a super-Parker spiral field structure is formed: below the Alfvén critical point, one-sided transverse field-aligned flows develop; above the Alfvén critical point, the field structure contracts between adjacent solar wind flows, and the radial field component decreases in magnitude with distance from the Sun, eventually reversing into a switchback. The sub-Parker and super-Parker spirals behave functionally as opposites…
2021


The Parker Solar Probe (PSP) aims to explore the nascent solar wind close to the Sun. Meanwhile, PSP is also expected to encounter small objects like comets and asteroids. In this work, we survey the ephemerides to find the chance of a recent encounter and then model the interaction between released dusty plasmas and solar wind plasmas. On 2019 September 2, a comet-like object, the 322P/Solar and Heliosphere Observatory, just passed its perihelion flying to a heliocentric distance of 0.12 au and swept by PSP at a relative distance as close as 0.025 au. We present the dynamics of the dust particles released from 322P, forming a curved dust tail. Along the path of PSP in the simulated inner heliosphere, the states of plasma and magnetic field are sampled and illustrated, with the magnetic field sequences from simulation results being compared directly with the in situ measurements from PSP. Through the comparison, we suggest that 322P might be at a deficient activity level releasing…
2021


In the present paper, we describe a theoretical model of the generation of harmonic emissions of type III solar radio bursts. The goal of our study is to fully take into account the most efficient physical processes involved in the generation of harmonic electromagnetic emission via nonlinear coupling of Langmuir waves in randomly inhomogeneous plasma of solar wind ( $l+l^\prime \to t$ ). We revisit the conventional mechanism of coalescence of primarily generated and back-scattered Langmuir waves in quasihomogeneous plasma. Additionally, we propose and investigate another mechanism that generates harmonic emission only in a strongly inhomogeneous plasma: the nonlinear coupling of incident and reflected Langmuir waves inside localized regions with enhanced plasma density (clumps), in the close vicinity of the reflection point. Both mechanisms imply the presence of strong density fluctuations in plasma. We use the results of a probabilistic model of beam-plasma interaction and evaluate…
2021


Abstract The addition of Parker Solar Probe (PSP) to the Heliophysics System Observatory has allowed for the unprecedented ability to study Corotating Interaction Regions (CIRs) at multiple radial distances without significant temporal/longitudinal variations. On September 19, 2019, PSP observed a CIR at ∼0.5 au when it was nearly radially aligned with the Solar Terrestrial Relations Observatory-Ahead (STEREO-A) spacecraft at ∼1 au, allowing for an unambiguous assessment of the radial evolution of a single CIR. Bulk plasma and magnetic field signatures of the CIR evolve in a fashion characteristic to previous observations; however, the suprathermal ions are enhanced over a larger longitudinal range at PSP than at STEREO-A, although at much lower intensities. The longitudinal spread appears to be largely a consequence of magnetic field line topology at CIRs between the compressed slow solar wind upstream and high-speed stream following the CIR, underscoring the importance of the large-…
2021


We present a major update to the 3D coronal rope ejection (3DCORE) technique for modeling coronal mass ejection flux ropes in conjunction with an approximate Bayesian computation (ABC) algorithm that is used for fitting the model to in situ magnetic field measurements. The model assumes an empirically motivated torus-like flux rope structure that expands self-similarly within the heliosphere, is influenced by a simplified interaction with the solar wind environment, and carries along an embedded analytical magnetic field. The improved 3DCORE implementation allows us to generate extremely large ensemble simulations that we then use to find global best-fit model parameters using an ABC sequential Monte Carlo algorithm. The usage of this algorithm, under some basic assumptions on the uncertainty of the magnetic field measurements, allows us to furthermore generate estimates on the uncertainty of model parameters using only a single in situ observation. We apply our model to synthetically…
2021


Two states of the slow solar wind are identified from in situ measurements by the Parker Solar Probe (PSP) inside 50 solar radii from the Sun. At such distances the wind measured by PSP has not yet undergone significant transformation related to the expansion and propagation of the wind. We focus in this study on the properties of the quiet solar wind with no magnetic switchbacks. The two states differ by their plasma beta, flux, and magnetic pressure. PSP s magnetic connectivity established with potential field source surface reconstructions, tested against extreme ultraviolet and white-light imaging, reveals the two states correspond to a transition from a streamer to an equatorial coronal hole. The expansion factors of magnetic field lines in the streamer are 20 times greater than those rooted near the center of the coronal hole. The very different expansion rates of the magnetic field result in different magnetic pressures measured by PSP in the two plasma states. Solar wind…
2021


The hot and diffuse nature of the Sun s extended atmosphere allows it to persist in non-equilibrium states for long enough that wave-particle instabilities can arise and modify the evolution of the expanding solar wind. Determining which instabilities arise, and how significant a role they play in governing the dynamics of the solar wind, has been a decades-long process involving in situ observations at a variety of radial distances. With new measurements from the Parker Solar Probe (PSP), we can study what wave modes are driven near the Sun, and calculate what instabilities are predicted for different models of the underlying particle populations. We model two hours-long intervals of PSP/SPAN-i measurements of the proton phase-space density during the PSP s fourth perihelion with the Sun using two commonly used descriptions for the underlying velocity distribution. The linear stability and growth rates associated with the two models are calculated and compared. We find that both…
2021


The search coil magnetometer (SCM) measures the magnetic signature of solar wind fluctuations with three components in the 3 Hz-50 kHz range and one single component in the 1 kHz-1 MHz range. This instrument is important for providing in situ observations of transients caused by interplanetary shocks and reconnection, for the identification of electromagnetic wave modes in plasmas and the determination of their characteristics (planarity, polarization, ellipticity, and k vector) and for studying the turbulent cascade in the kinetic range. Two similar triaxial search coils have been built for the Parker Solar Probe and Solar Orbiter missions. Here we describe the science objectives of both missions which led to the SCM design and present the characteristics of the two instruments.
2021


The scaling of the turbulent spectra provides a key measurement that allows us to discriminate between different theoretical predictions of turbulence. In the solar wind, this has driven a large number of studies dedicated to this issue using in situ data from various orbiting spacecraft. While a semblance of consensus exists regarding the scaling in the magnetohydrodynamic (MHD) and dispersive ranges, the precise scaling in the transition range and the actual physical mechanisms that control it remain open questions. Using the high-resolution data in the inner heliosphere from the Parker Solar Probe mission, we find that the sub-ion scales (i.e., at the frequency f ∼ [2, 9] Hz) follow a power-law spectrum f<SUP>α</SUP> with a spectral index α varying between -3 and -5.7. Our results also show that there is a trend toward an anticorrelation between the spectral slopes and the power amplitudes at the MHD scales, in agreement with previous studies: the higher the power…
2021


2020

<p>Solar Wind 15 brought together almost 250 experts from all continents of the world to discuss the current trends and future perspectives of the research on the Sun and its solar wind. The present article collection recaptures some of the highlights of their contributions.</p>
2020


<p>On 2018 November 5, about 24 hr before the first close perihelion passage of Parker Solar Probe (PSP), a coronal mass ejection (CME) entered the field of view of the inner detector of the Wide-field Imager for Solar PRobe (WISPR) instrument on board PSP, with the northward component of its trajectory carrying the leading edge of the CME off the top edge of the detector about four hours after its first appearance. We connect this event to a very small jetlike transient observed from 1 au by coronagraphs on both the SOlar and Heliospheric Observatory (SOHO) and the A component of the Solar TErrestrial RElations Observatory mission (STEREO-A). This allows us to make the first three-dimensional reconstruction of a CME structure considering both observations made very close to the Sun and images from two observatories at 1 au. The CME may be small and jetlike as viewed from 1 au, but the close-in vantage point of PSP/WISPR demonstrates that it is not intrinsically jetlike but…
2020


<p>We present model calculations of the transport processes of solar energetic particles in the corona and interplanetary medium for two events detected by Parker Solar Probe near its second perihelion on 2019 April 2 and April 4. In the 2019 April 2 event, the \&lt;100 keV proton differential intensity measured by the Integrated Science Investigation of the Sun Low-Energy Energetic Particle instrument increased by more than a factor of 10 above the pre-event intensity, whereas the \~1 MeV proton differential intensity detected by the High-Energy Energetic Particle Instrument did not show any intensity enhancement. In the 2019 April 4 event, the \~1 MeV proton intensity showed an increase of more than a factor of 100 above the pre-event intensity, but the \&lt;100 keV proton intensity enhancement was rather low and gradual. The observational fact that only the 2019 April 4 event displayed a high-energy intensity enhancement indicates that the associated acceleration…
2020


<p>NASA\textquoterights Parker Solar Probe (PSP) mission is currently investigating the local plasma environment of the inner heliosphere (\&lt;0.25 R<sub>☉</sub>) using both in situ and remote sensing instrumentation. Connecting signatures of microphysical particle heating and acceleration processes to macroscale heliospheric structure requires sensitive measurements of electromagnetic fields over a large range of physical scales. The FIELDS instrument, which provides PSP with in situ measurements of electromagnetic fields of the inner heliosphere and corona, includes a set of three vector magnetometers: two fluxgate magnetometers (MAGs) and a single inductively coupled search-coil magnetometer (SCM). Together, the three FIELDS magnetometers enable measurements of the local magnetic field with a bandwidth ranging from DC to 1 MHz. This manuscript reports on the development of a merged data set combining SCM and MAG (SCaM) measurements, enabling a high fidelity…
2020


<p>The Parker Solar Probe (PSP) has observed copious rapid magnetic field direction changes in the near-Sun solar wind. These features have been called "switchbacks," and their origin is a mystery. But their widespread nature suggests that they may be generated by a frequently occurring process in the Sun\textquoterights atmosphere. We examine the possibility that the switchbacks originate from coronal jets. Recent work suggests that many coronal jets result when photospheric magnetic flux cancels, and forms a small-scale "minifilament" flux rope that erupts and reconnects with coronal field. We argue that the reconnected erupting-minifilament flux rope can manifest as an outward propagating Alfv\ enic fluctuation that steepens into an increasingly compact disturbance as it moves through the solar wind. Using previous observed properties of coronal jets that connect to coronagraph-observed white-light jets (a.k.a. "narrow CMEs"), along with typical…
2020


<p>The Parker Solar Probe spacecraft completed the first two of its 24 scheduled orbits around the Sun on 18 June 2019, making history by flying halfway between Mercury and the Sun.</p>
2020


<p>First results from the Parker Solar Probe (PSP) mission have revealed ubiquitous coherent ion-scale waves in the inner heliosphere, which are signatures of kinetic wave-particle interactions and fluid instabilities. However, initial studies of the circularly polarized ion-scale waves observed by PSP have only thoroughly analyzed magnetic field signatures, precluding a determination of solar wind frame propagation direction and intrinsic wave polarization. A comprehensive determination of wave properties requires measurements of both electric and magnetic fields. Here, we use full capabilities of the PSP/FIELDS instrument suite to measure both the electric and magnetic components of circularly polarized waves. Comparing spacecraft frame magnetic field measurements with the Doppler-shifted cold plasma dispersion relation for parallel transverse waves constrains allowable plasma frame polarizations and wavevectors. We demonstrate that the Doppler-shifted cold plasma dispersion…
2020


<p>This Letter explores the relevance of nanoflare-based models for heating the quiet Sun corona. Using meterwave data from the Murchison Widefield Array, we present the first successful detection of impulsive emissions down to flux densities of \~mSFU, about two orders of magnitude weaker than earlier attempts. These impulsive emissions have durations ≲1 s and are present throughout the quiet solar corona. The fractional time occupancy of these impulsive emissions at a given region is ≲10\%. The histograms of these impulsive emissions follow a power-law distribution and show signs of clustering at small timescales. Our estimate of the energy that must be dumped in the corona to generate these impulsive emissions is consistent with the coronal heating requirements. Additionally, the statistical properties of these impulsive emissions are very similar to those recently determined for magnetic switchbacks by the Parker Solar Probe (PSP). We hope that this work will lead to a…
2020


<p>The global circulation of the open magnetic flux of the Sun, the component of the solar magnetic field that opens into the heliosphere, and the consequences of the global circulation were proposed by Fisk and coworkers in the early 2000s. The Parker Solar Probe, on its initial encounters with the Sun, has provided direct confirmation of both the global circulation and the physical mechanism by which the circulation occurs, transport by interchange reconnection between open magnetic flux and large coronal loops. The implications of this confirmation of the global circulation of open magnetic flux and the importance of interchange reconnection is discussed.</p>
2020


<p>We present heliospheric current sheet (HCS) and plasma sheet (HPS) observations during Parker Solar Probe\textquoterights (PSP) first orbit around the Sun. We focus on the eight intervals that display a true sector boundary (TSB; based on suprathermal electron pitch angle distributions) with one or several associated current sheets. The analysis shows that (1) the main density enhancements in the vicinity of the TSB and HCS are typically associated with electron strahl dropouts, implying magnetic disconnection from the Sun, (2) the density enhancements are just about twice that in the surrounding regions, suggesting mixing of plasmas from each side of the HCS, (3) the velocity changes at the main boundaries are either correlated or anticorrelated with magnetic field changes, consistent with magnetic reconnection, (4) there often exists a layer of disconnected magnetic field just outside the high-density regions, in agreement with a reconnected topology, (5) while a few cases…
2020


<p>The Parker Solar Probe (PSP) completed its first solar encounter in 2018 November, bringing it closer to the Sun than any previous mission. This allowed in situ investigation of the heliospheric current sheet (HCS) inside the orbit of Venus. The Parker observations reveal a well defined magnetic sector structure placing the spacecraft in a negative polarity region for most of the encounter. The observed current sheet crossings are compared to the predictions of both potential field source surface and magnetohydrodynamic models. All the model predictions are in good qualitative agreement with the observed crossings of the HCS. The models also generally agree that the HCS was nearly parallel with the solar equator during the inbound leg of the encounter and more significantly inclined during the outbound portion. The current sheet crossings at PSP are also compared to similar measurements made by the Wind spacecraft near Earth at 1 au. After allowing for orbital geometry and…
2020


<p>Alfv\ enic fluctuations in solar wind are an intrinsic property of fast streams, while slow intervals typically have a very low degree of Alfv\ enicity, with much more variable parameters. However, sometimes a slow wind can be highly Alfv\ enic. Here we compare three different regimes of solar wind, in terms of Alfv\ enic content and spectral properties, during a minimum phase of the solar activity and at 0.3 au. We show that fast and Alfv\ enic slow intervals share some common characteristics. This would suggest a similar solar origin, with the latter coming from over-expanded magnetic field lines, in agreement with observations at 1 au and at the maximum of the solar cycle. Due to the Alfv\ enic nature of the fluctuations in both fast and Alfv\ enic slow winds, we observe a well-defined correlation between the flow speed and the angle between magnetic field vector and radial direction. The high level of Alfv\ enicity is also responsible of intermittent enhancements (i.e.…
2020


<p>Heat transport in the solar corona and wind is still a major unsolved astrophysical problem. Because of the key role played by electrons, the electron density and temperature(s) are important prerequisites for understanding these plasmas. We present such in situ measurements along the two first solar encounters of the Parker Solar Probe, between 0.5 and 0.17 au from the Sun, revealing different states of the emerging solar wind near the solar activity minimum. These preliminary results are obtained from a simplified analysis of the plasma quasi-thermal noise (QTN) spectrum measured by the Radio Frequency Spectrometer (FIELDS). The local electron density is deduced from the tracking of the plasma line, which enables accurate measurements, independent of calibrations and spacecraft perturbations, whereas the temperatures of the thermal and suprathermal components of the velocity distribution, as well as the average kinetic temperature, are deduced from the shape of the plasma…
2020


<p>Small-scale magnetic flux ropes (SFRs) in the solar wind have been studied for decades. Statistical analysis utilizing various in situ spacecraft measurements is the main observational approach to investigating the generation and evolution of these small-scale structures. Based on the Grad-Shafranov reconstruction technique, we use the automated detection algorithm to build the databases of these small-scale structures via various spacecraft measurements at different heliocentric distances. We present the SFR properties, including the magnetic field and plasma parameters at different radial distances from the Sun near the ecliptic plane. It is found that the event occurrence rate is still of the order of a few hundreds per month, the duration and scale-size distributions follow power laws, and the flux-rope axis orientations are approximately centered around the local Parker spiral directions. In general, most SFR properties exhibit radial decays. In addition, with various…
2020