Found 76 results
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

Pages

A
Authors: Abbo L., Ofman L., Antiochos S. K., Hansteen V. H., Harra L., et al.
Title: Slow Solar Wind: Observations and Modeling
Abstract:

While it is certain that the fast solar wind originates from coronal holes, where and how the slow solar wind (SSW) is formed remains an outstanding question in solar physics even in the post-SOHO era. The quest for the SSW origin forms a major objective for the planned future missions such as the Solar Orbiter and Solar Probe Plus. Nonetheless, results from spacecraft data, combined with theoretical modeling, have helped to investigate many aspects of the SSW. Fundamental physical properties of the coronal plasma have been derived from spectroscopic and imaging remote-sensing data and in situ data, and these results have provided crucial insights for a deeper understanding of the origin and acceleration of the SSW. Advanced models of the SSW in coronal streamers and other structures ha. . .
Date: 11/2016 Publisher: Space Science Reviews Pages: 55 - 108 DOI: 10.1007/s11214-016-0264-1 Available at: http://link.springer.com/10.1007/s11214-016-0264-1http://link.springer.com/content/pdf/10.1007/s11214-016-0264-1.pdfhttp://link.springer.com/content/pdf/10.1007/s11214-016-0264-1.pdfhttp://link.springer.com/article/10.1007/s11214-016-0264-1/fulltext.html
More Details

Authors: Amicis Raffaella ’, Matteini Lorenzo, and Bruno Roberto
Title: On slow solar wind with high Alfvénicity: from composition and microphysics to spectral properties
Abstract:

Alfvénic fluctuations are very common features in the solar wind and are found especially within the main portion of fast-wind streams while the slow wind usually is less Alfvénic and more variable. In general, the fast and slow winds show many differences, which span from the large-scale structure to small-scale phenomena, including also a different turbulent behaviour. Recent studies, however, have shown that even the slow wind can sometimes be highly Alfvénic, with fluctuations as large as those of the fast wind. This study is devoted to presenting many facets of this Alfvénic slow solar wind, including for example the study of the source regions and their connection to coronal structures, large-scale properties, and microscale phenomena and also impact on the spectral features. . . .
Date: 3/2019 Publisher: Monthly Notices of the Royal Astronomical Society DOI: 10.1093/mnras/sty3329 Available at: https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/sty3329/5245187http://academic.oup.com/mnras/advance-article-pdf/doi/10.1093/mnras/sty3329/27125375/sty3329.pdf
More Details

B
Authors: Balat-Pichelin M., Eck J., and Sans J.L.
Title: Thermal radiative properties of carbon materials under high temperature and vacuum ultra-violet (VUV) radiation for the heat shield of the Solar Probe Plus mission
Abstract:

The Solar Probe Plus (SP+) mission will approach the Sun as close as 9.5 solar radii in order to understand the origin of the solar corona heating and the acceleration of the solar wind. Submitted to such extreme environmental conditions, a thermal protection system is considered to protect the payload of the SP+ spacecraft. Carbon-based materials are good candidate to fulfill this role and critical point remains the equilibrium temperature reached at perihelion by the heat shield. In this paper, experimental results obtained for the solar absorptivity α, the total hemispherical emissivity ɛ and its ratio α/ɛ, conditioning the equilibrium temperature of the thermal protection system, are presented for different kinds of carbon materials heated at . . .
Date: 01/2012 Publisher: Applied Surface Science Pages: 2829 - 2835 DOI: 10.1016/j.apsusc.2011.10.142 Available at: http://linkinghub.elsevier.com/retrieve/pii/S0169433211017302
More Details

Authors: Balat-Pichelin M., Eck J., Heurtault S., and énat H.
Title: Experimental study of pyrolytic boron nitride at high temperature with and without proton and VUV irradiations
Abstract:

In the frame of future exploration missions such as Solar Probe Plus (NASA) and PHOIBOS (ESA), research was carried out to study pyrolytic BN material envisaged as coating for their heat shields. The physico-chemical behavior of CVD pBN at very high temperature with or without hydrogen ions and VUV (Vacuum Ultra-Violet) irradiations was studied in high vacuum together with the in situ measurement of the thermal radiative properties conditioning the thermal equilibrium of the heat shield. Experimental results obtained on massive pBN samples are presented through in situ mass spectrometry and mass loss rate, and post-test microstructural characterization by XRD, SEM, AFM and nano-indentation techniques, some of them leading to mechanical properties. It could be concluded that synergistic . . .
Date: 09/2014 Publisher: Applied Surface Science Pages: 415 - 425 DOI: 10.1016/j.apsusc.2014.07.007 Available at: https://linkinghub.elsevier.com/retrieve/pii/S0169433214015219https://api.elsevier.com/content/article/PII:S0169433214015219?httpAccept=text/xmlhttps://api.elsevier.com/content/article/PII:S0169433214015219?httpAccept=text/plain
More Details

Authors: Bale S. D., Goetz K., Harvey P. R., Turin P., Bonnell J. W., et al.
Title: The FIELDS Instrument Suite for Solar Probe Plus
Abstract:

NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.


Date: 12/2016 Publisher: Space Science Reviews Pages: 49 - 82 DOI: 10.1007/s11214-016-0244-5 Available at: http://link.springer.com/10.1007/s11214-016-0244-5http://link.springer.com/content/pdf/10.1007/s11214-016-0244-5.pd
More Details
Authors: Banks Michael
Title: NASA launches Parker Solar Probe mission to 'touch' the Sun
Abstract:

NASA has launched a mission to study the Sun’s atmosphere and solar wind that will come far closer to our star than any other craft before.


Date: 09/2018 Publisher: Physics World Pages: 7 - 7 DOI: 10.1088/2058-7058/31/9/11 Available at: http://stacks.iop.org/2058-7058/31/i=9/a=11?key=crossref.74cb5927650dbdc73ec7a9da93480898
More Details
Authors: Binias Cindy, Do Van Tu, Jude-Lemeilleur Florence, Plus Martin, Froidefond Jean-Marie, et al.
Title: Environmental factors contributing to the development of brown muscle disease and perkinsosis in Manila clams ( Ruditapes philippinarum ) and trematodiasis in cockles ( Cerastoderma edule ) of Arcachon Bay
Abstract: N/A
Date: 06/2014 Publisher: Marine Ecology Pages: 67 - 77 DOI: 10.1111/maec.2014.35.issue-s110.1111/maec.12087 Available at: http://doi.wiley.com/10.1111/maec.2014.35.issue-s1http://doi.wiley.com/10.1111/maec.12087https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fmaec.12087
More Details
Authors: Bourdin Philippe, Singh Nishant K., and Brandenburg Axel
Title: Magnetic Helicity Reversal in the Corona at Small Plasma Beta
Abstract:

Solar and stellar dynamos shed small-scale and large-scale magnetic helicity of opposite signs. However, solar wind observations and simulations have shown that some distance above the dynamo both the small-scale and large-scale magnetic helicities have reversed signs. With realistic simulations of the solar corona above an active region now being available, we have access to the magnetic field and current density along coronal loops. We show that a sign reversal in the horizontal averages of the magnetic helicity occurs when the local maximum of the plasma beta drops below unity and the field becomes nearly fully force free. Hence, this reversal is expected to occur well within the solar corona and would not directly be accessible to in situ measurements with the Parker Solar Probe or . . .
Date: 12/2018 Publisher: The Astrophysical Journal Pages: 2 DOI: 10.3847/1538-4357/aae97a Available at: http://stacks.iop.org/0004-637X/869/i=1/a=2?key=crossref.90fa7f41d90e2c8b57f8248c0437cc6b
More Details

Authors: Brodu E., and Balat-Pichelin M.
Title: Emissivity of Boron Nitride and Metals for the Solar Probe Plus Mission
Abstract:
For application to the Solar Probe Plus mission (NASA), the behavior and the thermo-optical performance at very high temperatures (range 1100–2200 K) of candidate passive thermal control materials was assessed. On one hand, a pyrolytic boron nitride coating (130  μm 130  μm thick) was proved to be stable at high temperatures up to 2200 K in vacuum, as well as proved, via total and spectral emissivity measurements at high temperatures, to be able to effectively turn an initially selective solar absorber substrate (carbon/carbon composite) into a solar reflector. On the other hand, chemical vapor deposition coatings made of refractory metals with highly textured surfaces were proved to be able to significantly reduce the temperature of a metall. . .
Date: 11/2016 Publisher: Journal of Spacecraft and Rockets Pages: 1119 - 1127 DOI: 10.2514/1.A33453 Available at: https://arc.aiaa.org/doi/10.2514/1.A33453https://arc.aiaa.org/doi/pdf/10.2514/1.A33453
More Details
C
Authors: Case A. W., Kasper J. C., Daigneau P. S., Caldwell D., Freeman M., et al.
Title: AIP Conference ProceedingsDesigning a sun-pointing Faraday cup for solar probe plus
Abstract:

The NASA Solar Probe Plus (SPP) mission will be the first spacecraft to pass through the sub-Alfvénic solar corona. The objectives of the mission are to trace the flow of energy that heats and accelerates the solar corona and solar wind, to determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind, and to explore mechanisms that accelerate and transport energetic particles. The Solar Wind Electrons, Alphas, and Protons (SWEAP) Investigation instrument suite on SPP will measure the bulk solar wind conditions in the inner heliosphere. SWEAP consists of the Solar Probe Cup (SPC), a sun-pointing Faraday Cup, and the Solar Probe ANalyzers (SPAN), a set of 3 electrostatic analyzers that will reside in the penumbra of SPP's thermal protection syst. . .
Date: Publisher: AIP DOI: 10.1063/1.4811083 Available at: http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4811083
More Details

Authors: Chandran Benjamin D. G.
Title: Parametric instability, inverse cascade and the  range of solar-wind turbulence
Abstract:

In this paper, weak-turbulence theory is used to investigate the nonlinear evolution of the parametric instability in three-dimensional low-β plasmas at wavelengths much greater than the ion inertial length under the assumption that slow magnetosonic waves are strongly damped. It is shown analytically that the parametric instability leads to an inverse cascade of Alfvén wave quanta, and several exact solutions to the wave kinetic equations are presented. The main results of the paper concern the parametric decay of Alfvén waves that initially satisfy e+ ≫ e-, where e+ and e- are the frequency (f) spectra of Alfvén waves propagating in opposite directions along the magnetic field lines. If e+ initially has a peak frequency fDate: 02/2018 Publisher: Journal of Plasma Physics DOI: 10.1017/S0022377818000016 Available at: https://www.cambridge.org/core/product/identifier/S0022377818000016/type/journal_article
More Details

Authors: Chhiber R, Usmanov AV, Matthaeus WH, and Goldstein ML
Title: SOLAR WIND COLLISIONAL AGE FROM A GLOBAL MAGNETOHYDRODYNAMICS SIMULATION
Abstract:

Simple estimates of the number of Coulomb collisions experienced by the interplanetary plasma to the point of observation, I.e., the “collisional age”, can be usefully employed in the study of non-thermal features of the solar wind. Usually these estimates are based on local plasma properties at the point of observation. Here we improve the method of estimation of the collisional age by employing solutions obtained from global three-dimensional magnetohydrodynamics simulations. This enables evaluation of the complete analytical expression for the collisional age without using approximations. The improved estimation of the collisional timescale is compared with turbulence and expansion timescales to assess the relative importance of collisions. The collisional age computed using the . . .
Date: 04/2016 Publisher: The Astrophysical Journal Pages: 34 DOI: 10.3847/0004-637X/821/1/34 Available at: http://stacks.iop.org/0004-637X/821/i=1/a=34?key=crossref.788f196bae255efe123dabca17bb586dhttp://stacks.iop.org/0004-637X/821/i=1/a=34/pdfhttp://stacks.iop.org/0004-637X/821/i=1/a=34?key=crossref.788f196bae255efe123dabca17bb586d
More Details

Authors: Clemens Adam, and Burgess David
Title: Pickup ion processes associated with spacecraft thrusters: Implications for solar probe plus
Abstract:

Chemical thrusters are widely used in spacecraft for attitude control and orbital manoeuvres. They create an exhaust plume of neutral gas which produces ions via photoionization and charge exchange. Measurements of local plasma properties will be affected by perturbations caused by the coupling between the newborn ions and the plasma. A model of neutral expansion has been used in conjunction with a fully three-dimensional hybrid code to study the evolution and ionization over time of the neutral cloud produced by the firing of a mono-propellant hydrazine thruster as well as the interactions of the resulting ion cloud with the ambient solar wind. Results are presented which show that the plasma in the region near to the spacecraft will be perturbed for an extended period of time with the. . .
Date: 03/2016 Publisher: Physics of Plasmas Pages: 032901 DOI: 10.1063/1.4942938 Available at: http://aip.scitation.org/doi/10.1063/1.4942938http://aip.scitation.org/doi/pdf/10.1063/1.4942938
More Details

Authors: Cranmer Steven R.
Title: Predictions for Dusty Mass Loss from Asteroids During Close Encounters with Solar Probe Plus
Abstract:

The Solar Probe Plus ( SPP) mission will explore the Sun's corona and innermost solar wind starting in 2018. The spacecraft will also come close to a number of Mercury-crossing asteroids with perihelia less than 0.3 AU. At small heliocentric distances, these objects may begin to lose mass, thus becoming "active asteroids" with comet-like comae or tails. This paper assembles a database of 97 known Mercury-crossing asteroids that may be encountered by SPP, and it presents estimates of their time-dependent visible-light fluxes and mass loss rates. Assuming a similar efficiency of sky background subtraction as was achieved by STEREO , we find that approximately 80 % of these asteroids are bright enough to be observed by the Wide-field Imager for SPP (WISPR). A model of gas/dust mass loss fr. . .
Date: 11/2016 Publisher: Earth, Moon, and Planets Pages: 51 - 79 DOI: 10.1007/s11038-016-9490-5 Available at: http://link.springer.com/10.1007/s11038-016-9490-5http://link.springer.com/content/pdf/10.1007/s11038-016-9490-5.pdfhttp://link.springer.com/content/pdf/10.1007/s11038-016-9490-5.pdfhttp://link.springer.com/article/10.1007/s11038-016-9490-5/fulltext.html
More Details

D
Authors: Daloz Anne S., Camargo S. J., Kossin J. P., Emanuel K., Horn M., et al.
Title: Cluster Analysis of Downscaled and Explicitly Simulated North Atlantic Tropical Cyclone Tracks
Abstract:

A realistic representation of the North Atlantic tropical cyclone tracks is crucial as it allows, for example, explaining potential changes in U.S. landfalling systems. Here, the authors present a tentative study that examines the ability of recent climate models to represent North Atlantic tropical cyclone tracks. Tracks from two types of climate models are evaluated: explicit tracks are obtained from tropical cyclones simulated in regional or global climate models with moderate to high horizontal resolution (1°–0.25°), and downscaled tracks are obtained using a downscaling technique with large-scale environmental fields from a subset of these models. For both configurations, tracks are objectively separated into four groups using a cluster technique, leading to a zonal and a merid. . .
Date: 02/2015 Publisher: Journal of Climate Pages: 1333 - 1361 DOI: 10.1175/JCLI-D-13-00646.1 Available at: http://journals.ametsoc.org/doi/10.1175/JCLI-D-13-00646.1
More Details

Authors: de Patoul Judith, Foullon Claire, and Riley Pete
Title: 3D ELECTRON DENSITY DISTRIBUTIONS IN THE SOLAR CORONA DURING SOLAR MINIMA: ASSESSMENT FOR MORE REALISTIC SOLAR WIND MODELING
Abstract:

Knowledge of the electron density distribution in the solar corona put constraints on the magnetic field configurations for coronal modeling and on initial conditions for solar wind modeling. We work with polarized SOHO/LASCO-C2 images from the last two recent minima of solar activity (1996-1997 and 2008-2010), devoid of coronal mass ejections. The goals are to derive the 4D electron density distributions in the corona by applying a newly developed time-dependent tomographic reconstruction method and to compare the results between the two solar minima and with two magnetohydrodynamic models. First, we confirm that the values of the density distribution in thermodynamic models are more realistic than in polytropic ones. The tomography provides more accurate distributions in the polar reg. . .
Date: 11/2015 Publisher: The Astrophysical Journal Pages: 68 DOI: 10.1088/0004-637X/814/1/68 Available at: http://stacks.iop.org/0004-637X/814/i=1/a=68?key=crossref.845557cfda4b2a3786588c8b62dbb093
More Details

Authors: DeForest C. E., Howard T. A., and McComas D. J.
Title: INBOUND WAVES IN THE SOLAR CORONA: A DIRECT INDICATOR OF ALFVÉN SURFACE LOCATION
Abstract:

The tenuous supersonic solar wind that streams from the top of the corona passes through a natural boundary—the Alfvén surface—that marks the causal disconnection of individual packets of plasma and magnetic flux from the Sun itself. The Alfvén surface is the locus where the radial motion of the accelerating solar wind passes the radial Alfvén speed, and therefore any displacement of material cannot carry information back down into the corona. It is thus the natural outer boundary of the solar corona and the inner boundary of interplanetary space. Using a new and unique motion analysis to separate inbound and outbound motions in synoptic visible-light image sequences from the COR2 coronagraph on board the STEREO-A spacecraft, we have identified inbound wave motion in the outer co. . .
Date: 06/2014 Publisher: The Astrophysical Journal Pages: 124 DOI: 10.1088/0004-637X/787/2/124 Available at: http://stacks.iop.org/0004-637X/787/i=2/a=124?key=crossref.8ca79a982204ddd2b4922cc108364616
More Details

E
Authors: el H. ̧, Motschmann U., üchner J., Narita Y., and Nariyuki Y.
Title: ION-SCALE TURBULENCE IN THE INNER HELIOSPHERE: RADIAL DEPENDENCE
Abstract:

The evolution of the ion-scale plasma turbulence in the inner heliosphere is studied by associating the plasma parameters for hybrid-code turbulence simulations to the radial distance from the Sun via a Solar wind model based mapping procedure. Using a mapping based on a one-dimensional solar wind expansion model, the resulting ion-kinetic scale turbulence is related to the solar wind distance from the Sun. For this purpose the mapping is carried out for various values of ion beta that correspond to the heliocentric distance. It is shown that the relevant normal modes such as ion cyclotron and ion Bernstein modes will occur first at radial distances of about 0.2-0.3 AU, i.e., near the Mercury orbit. This finding can be used as a reference, a prediction to guide the in situ measurements . . .
Date: 10/2015 Publisher: The Astrophysical Journal Pages: 175 DOI: 10.1088/0004-637X/812/2/175 Available at: http://stacks.iop.org/0004-637X/812/i=2/a=175?key=crossref.a9d511ae127248e735f11254de6e3bb9
More Details

É
Authors: éville Victor, Tenerani Anna, and Velli Marco
Title: Parametric Decay and the Origin of the Low-frequency Alfvénic Spectrum of the Solar Wind
Abstract:

The fast solar wind shows a wide spectrum of transverse magnetic and velocity field perturbations. These perturbations are strongly correlated in the sense of Alfvén waves propagating mostly outward, from the Sun to the interplanetary medium. They are likely to be fundamental to the acceleration and the heating of the solar wind. However, the precise origin of the broadband spectrum is unknown to date. Typical periods of chromospheric Alfvén waves are limited to a few minutes, and any longer period perturbations should be strongly reflected at the transition region. In this work, we show that minute long Alfvénic fluctuations are unstable to the parametric instability. Parametric instability enables an inverse energy cascade by exciting several-hour-long periods of Alfvénic fluctuat. . .
Date: 10/2018 Publisher: The Astrophysical Journal Pages: 38 DOI: 10.3847/1538-4357/aadb8f Available at: http://stacks.iop.org/0004-637X/866/i=1/a=38?key=crossref.877507b60fca8d8ddb73692a546936b0
More Details

F
Authors: Fox N. J., Velli M. C., Bale S. D., Decker R., Driesman A., et al.
Title: The Solar Probe Plus Mission: Humanity’s First Visit to Our Star
Abstract:

Solar Probe Plus (SPP) will be the first spacecraft to fly into the low solar corona. SPP's main science goal is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Understanding these fundamental phenomena has been a top-priority science goal for over five decades, dating back to the 1958 Simpson Committee Report. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The mission design and the technology and engineering developments enable SPP to meet its science objectives to: (1) Trace the flow of energy that heats and accelerates the sola. . .
Date: 12/2016 Publisher: Space Science Reviews Pages: 7 - 48 DOI: 10.1007/s11214-015-0211-6 Available at: http://link.springer.com/10.1007/s11214-015-0211-6http://link.springer.com/content/pdf/10.1007/s11214-015-0211-6.pdf
More Details

Authors: Fox Nicola J., and McComas David J.
Title: Editorial: Topical Volume on Developing the Solar Probe Plus Mission
Abstract:

The Solar Probe Plus mission is a remarkable and historic step in the exploration of humankind. We have visited all of the planets and a number of other smaller moons and bodies; we have explored the magnetospheres, not just of Earth but also of all the planets; and we have explored our heliosphere and even flown a spacecraft beyond its boundary and into interstellar space itself. However, only with the launch of Solar Probe Plus will we actually visit our own star—the Sun—repeatedly traveling to within 9 solar radii (R S  RS ) of its surface (10R S  10RS heliocentric) and directly through its corona. From here, we will at long last be able to solve the key mysteries that have puzzled scientists for over 50 years: how the corona is heated and how the so. . .
Date: 12/2016 Publisher: Space Science Reviews Pages: 1 - 6 DOI: 10.1007/s11214-016-0323-7 Available at: http://link.springer.com/10.1007/s11214-016-0323-7http://link.springer.com/content/pdf/10.1007/s11214-016-0323-7.pdfhttp://link.springer.com/content/pdf/10.1007/s11214-016-0323-7.pdfhttp://link.springer.com/article/10.1007/s11214-016-0323-7/fulltext.html
More Details

G
Authors: Goelzer Molly L., Schwadron Nathan A., and Smith Charles W.
Title: An analysis of Alfvén radius based on sunspot number from 1749 to today
Abstract:

The Solar Probe Plus mission now under construction will provide the first in situ measurements from inside the orbit of Mercury. The most critical part of that mission will be measurements from inside the Alfvén radius where the Alfvén speed exceeds the wind speed and the physics of the solar wind changes fundamentally due, in part, to the multidirectionality of wave propagation. In this region waves from both sunward and antisunward of the observation point can effect the local dynamics including the turbulent evolution, heating, and acceleration of the plasma. While the location of this point can change with solar wind conditions, we ask the question of whether there is a systematic dependence on the solar cycle that moves the average Alfvén radius to different locations depending. . .
Date: 01/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 115 - 120 DOI: 10.1002/2013JA019420 Available at: http://doi.wiley.com/10.1002/2013JA019420http://onlinelibrary.wiley.com/wol1/doi/10.1002/2013JA019420/fullpdf
More Details

Authors: Good S. W., Forsyth R. J., Raines J. M., Gershman D. J., Slavin J. A., et al.
Title: RADIAL EVOLUTION OF A MAGNETIC CLOUD: MESSENGER , STEREO , AND VENUS EXPRESS OBSERVATIONS
Abstract:

The Solar Orbiter and Solar Probe Plus missions will provide observations of magnetic clouds closer to the Sun than ever before, and it will be good preparation for these missions to make full use of the most recent in situ data sets from the inner heliosphere—namely, those provided by MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Venus Express—for magnetic cloud studies. We present observations of the same magnetic cloud made by MESSENGER at Mercury and later by Solar TErrestrial RElations Observatory-B (STEREO-B), while the spacecraft were radially aligned in 2011 November. Few such radial observations of magnetic clouds have been previously reported. Estimates of the solar wind speed at MESSENGER are also presented, calculated through the applicati. . .
Date: 07/2015 Publisher: The Astrophysical Journal Pages: 177 DOI: 10.1088/0004-637X/807/2/177 Available at: http://stacks.iop.org/0004-637X/807/i=2/a=177?key=crossref.a1b49ae2196cca72b5d1ec280eba0793
More Details

Authors: Graham G. A., Rae I. J., Owen C. J., and Walsh A. P.
Title: Investigating the Effect of IMF Path Length on Pitch-angle Scattering of Strahl within 1 au
Abstract:

Strahl is the strongly field-aligned, beam-like population of electrons in the solar wind. Strahl width is observed to increase with distance from the Sun, and hence strahl electrons must be subject to in-transit scattering effects. Different energy relations have been both observed and modeled for both strahl width and the width increase with radial distance. Thus, there is much debate regarding what mechanism(s) scatter strahl. In this study, we use a novel method to investigate strahl evolution within 1 au by estimating the distance traveled by the strahl along the interplanetary magnetic field (IMF). We do this by implementing methods developed in previous studies, which make use of the onset of solar energetic particles at ̃1 au. Thus, we are able to obtain average strahl broadeni. . .
Date: 03/2018 Publisher: The Astrophysical Journal Pages: 40 DOI: 10.3847/1538-4357/aaaf1b Available at: http://stacks.iop.org/0004-637X/855/i=1/a=40?key=crossref.ef4d8c88b914db7976655ab16f8f792a
More Details

Authors: Guillemant S., Génot V., Matéo-Vélez J.-C., Ergun R., and Louarn P.
Title: Solar wind plasma interaction with solar probe plus spacecraft
Abstract:

3-D PIC (Particle In Cell) simulations of spacecraft-plasma interactions in the solar wind context of the Solar Probe Plus mission are presented. The SPIS software is used to simulate a simplified probe in the near-Sun environment (at a distance of 0.044 AU or 9.5 RS from the Sun surface). We begin this study with a cross comparison of SPIS with another PIC code, aiming at providing the static potential structure surrounding a spacecraft in a high photoelectron environment. This paper presents then a sensitivity study using generic SPIS capabilities, investigating the role of some physical phenomena and numerical models. It confirms that in the near- sun environment, the Solar Probe Plus spacecraft would rather be negatively charged, despite the high yield of photoem. . .
Date: 07/24/2012 Publisher: Annales Geophysicae Pages: 1075 - 1092 DOI: 10.5194/angeo-30-1075-2012 Available at: http://www.ann-geophys.net/30/1075/2012/http://www.ann-geophys.net/30/1075/2012/angeo-30-1075-2012.pdf
More Details

Pages