Found 6 results
[ Author(Asc)] Title Type Year
Filters: First Letter Of Last Name is N  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
N
Authors: Nisticò Giuseppe, Bothmer Volker, Vourlidas Angelos, Liewer Paulett C., Thernisien Arnaud F., et al.
Title: Simulating White-Light Images of Coronal Structures for Parker Solar Probe/WISPR: Study of the Total Brightness Profiles
Abstract:

The Wide-field Imager for Parker Solar Probe (WISPR) captures unprecedented white-light images of the solar corona and inner heliosphere. Thanks to the uniqueness of the Parker Solar Probe's (PSP) orbit, WISPR is able to image "locally" coronal structures at high spatial and time resolutions. The observed plane of sky, however, rapidly changes because of the PSP's high orbital speed. Therefore, the interpretation of the dynamics of the coronal structures recorded by WISPR is not straightforward. A first study, undertaken by Liewer et al. (Solar Phys.294, 93, 2019), shows how different coronal features (e.g., streamers, flux ropes) appear in the field-of-view of WISPR by means of raytracing simulations. In particular, they analyze the effects of the spatial resolution changes on both the. . .
Date: 04/2020 Publisher: Solar Physics DOI: 10.1007/s11207-020-01626-y Available at: http://link.springer.com/10.1007/s11207-020-01626-yhttp
More Details

Authors: Nisticò Giuseppe, Bothmer Volker, Vourlidas Angelos, Liewer Paulett C., Thernisien Arnaud F., et al.
Title: Simulating White-Light Images of Coronal Structures for Parker Solar Probe/WISPR: Study of the Total Brightness Profiles
Abstract:

The Wide-field Imager for Parker Solar Probe (WISPR) captures unprecedented white-light images of the solar corona and inner heliosphere. Thanks to the uniqueness of the Parker Solar Probe’s (PSP) orbit, WISPR is able to image "locally" coronal structures at high spatial and time resolutions. The observed plane of sky, however, rapidly changes because of the PSP’s high orbital speed. Therefore, the interpretation of the dynamics of the coronal structures recorded by WISPR is not straightforward. A first study, undertaken by Liewer et al. (Solar Phys.294, 93, 2019), shows how different coronal features (e.g., streamers, flux ropes) appear in the field-of-view of WISPR by means of raytracing simulations. In particular, they analyze the effects of the spatial resolution changes on both. . .
Date: 04/2020 Publisher: Solar Physics DOI: 10.1007/s11207-020-01626-y Available at: http://link.springer.com/10.1007/s11207-020-01626-yhttp
More Details

Authors: Nieves-Chinchilla Teresa, Szabo Adam, Korreck Kelly E., Alzate Nathalia, Balmaceda Laura A., et al.
Title: Analysis of the Internal Structure of the Streamer Blowout Observed by the Parker Solar Probe During the First Solar Encounter
Abstract:

In this paper, we present an analysis of the internal structure of a coronal mass ejection (CME) detected by in situ instruments on board the Parker Solar Probe (PSP) spacecraft during its first solar encounter. On 2018 November 11 at 23:53 UT, the FIELDS magnetometer measured an increase in strength of the magnetic field as well as a coherent change in the field direction. The SWEAP instrument simultaneously detected a low proton temperature and signatures of bidirectionality in the electron pitch angle distribution (PAD). These signatures are indicative of a CME embedded in the slow solar wind. Operating in conjunction with PSP was the STEREO A spacecraft, which enabled the remote observation of a streamer blowout by the SECCHI suite of instruments. The source at the Sun of the slow a. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 63 DOI: 10.3847/1538-4365/ab61f5 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab61f5
More Details

Authors: Nieves-Chinchilla Teresa, Szabo Adam, Korreck Kelly E., Alzate Nathalia, Balmaceda Laura A., et al.
Title: Analysis of the Internal Structure of the Streamer Blowout Observed by the Parker Solar Probe During the First Solar Encounter
Abstract:

In this paper, we present an analysis of the internal structure of a coronal mass ejection (CME) detected by in situ instruments on board the Parker Solar Probe (PSP) spacecraft during its first solar encounter. On 2018 November 11 at 23:53 UT, the FIELDS magnetometer measured an increase in strength of the magnetic field as well as a coherent change in the field direction. The SWEAP instrument simultaneously detected a low proton temperature and signatures of bidirectionality in the electron pitch angle distribution (PAD). These signatures are indicative of a CME embedded in the slow solar wind. Operating in conjunction with PSP was the STEREO A spacecraft, which enabled the remote observation of a streamer blowout by the SECCHI suite of instruments. The source at the Sun of the slow a. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 63 DOI: 10.3847/1538-4365/ab61f5 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab61f5
More Details

Authors: Němeček Zdeněk, Ďurovcová Tereza, Šafránková Jana, Richardson John D., Šimůnek Jiří, et al.
Title: (Non)radial Solar Wind Propagation through the Heliosphere
Abstract:

The solar wind nonradial velocity components observed beyond the Alfvén point are usually attributed to waves, the interaction of different streams, or other transient phenomena. However, Earth-orbiting spacecraft as well as monitors at L1 indicate systematic deviations of the wind velocity from the radial direction. Since these deviations are of the order of several degrees, the calibration of the instruments is often questioned. This paper investigates for the first time the evolution of nonradial components of the solar wind flow along the path from ≍0.17 to 10 au. A comparison of observations at 1 au with those closer to or farther from the Sun based on measurements of many spacecraft at different locations in the heliosphere (Parker Solar Probe, Helios 1 and 2, Wind, Advanced Co. . .
Date: 07/2020 Publisher: The Astrophysical Journal Pages: L39 DOI: 10.3847/2041-8213/ab9ff7 Available at: https://iopscience.iop.org/article/10.3847/2041-8213/ab9ff7https://iopscience.iop.org/article/10.3847/2041-8213/ab9ff7
More Details

Authors: Němeček Zdeněk, Ďurovcová Tereza, Šafránková Jana, Richardson John D., Šimůnek Jiří, et al.
Title: (Non)radial Solar Wind Propagation through the Heliosphere
Abstract:

The solar wind nonradial velocity components observed beyond the Alfvén point are usually attributed to waves, the interaction of different streams, or other transient phenomena. However, Earth-orbiting spacecraft as well as monitors at L1 indicate systematic deviations of the wind velocity from the radial direction. Since these deviations are of the order of several degrees, the calibration of the instruments is often questioned. This paper investigates for the first time the evolution of nonradial components of the solar wind flow along the path from ≍0.17 to 10 au. A comparison of observations at 1 au with those closer to or farther from the Sun based on measurements of many spacecraft at different locations in the heliosphere (Parker Solar Probe, Helios 1 and 2, Wind, Advanced Co. . .
Date: 07/2020 Publisher: The Astrophysical Journal Pages: L39 DOI: 10.3847/2041-8213/ab9ff7 Available at: https://iopscience.iop.org/article/10.3847/2041-8213/ab9ff7https://iopscience.iop.org/article/10.3847/2041-8213/ab9ff7
More Details