Found 11 results
[ Author(Asc)] Title Type Year
Filters: First Letter Of Last Name is D  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Authors: Dubois S., Savoye N., émare A., Plus M., Charlier K., et al.
Title: Origin and composition of sediment organic matter in a coastal semi-enclosed ecosystem: An elemental and isotopic study at the ecosystem space scale
Abstract:

The origin and composition of sediment organic matter (SOM) were investigated together with its spatial distribution in the Arcachon Bay - a macrotidal lagoon that shelters the largest Zostera noltii meadow in Europe - using elemental and isotopic ratios. Subtidal and intertidal sediments and primary producers were both sampled in April 2009. Their elemental and isotopic compositions were assessed. Relative contributions of each source to SOM were estimated using a mixing model. The SOM composition tended to be homogeneous over the whole ecosystem and reflected the high diversity of primary producers in this system. On average, SOM was composed of 25% of decayed phanerogams, 19% of microphytobenthos, 20% of phytoplankton, 19% of river SPOM and 17% of macroalgae. There was no evidence of. . .
Date: 06/2012 Publisher: Journal of Marine Systems Pages: 64 - 73 DOI: 10.1016/j.jmarsys.2011.10.009 Available at: https://linkinghub.elsevier.com/retrieve/pii/S0924796311002399https://api.elsevier.com/content/article/PII:S0924796311002399?httpAccept=text/xmlhttps://api.elsevier.com/content/article/PII:S0924796311002399?httpAccept=text/plain
More Details

Authors: Duan Die, Bowen Trevor A., Chen Christopher H. K., Mallet Alfred, He Jiansen, et al.
Title: The Radial Dependence of Proton-scale Magnetic Spectral Break in Slow Solar Wind during PSP Encounter 2
Abstract:

Magnetic field fluctuations in the solar wind are commonly observed to follow a power-law spectrum. Near proton-kinetic scales, a spectral break occurs that is commonly interpreted as a transition to kinetic turbulence. However, this transition is not yet entirely understood. By studying the scaling of the break with various plasma properties, it may be possible to constrain the processes leading to the onset of kinetic turbulence. Using data from the Parker Solar Probe, we measure the proton-scale break over a range of heliocentric distances, enabling a measurement of the transition from inertial to kinetic-scale turbulence under various plasma conditions. We find that the break frequency fb increases as the heliocentric distance r decreases in the slow solar wind following . . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 55 DOI: 10.3847/1538-4365/ab672d Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab672d
More Details

Authors: Duan Die, Bowen Trevor A., Chen Christopher H. K., Mallet Alfred, He Jiansen, et al.
Title: The Radial Dependence of Proton-scale Magnetic Spectral Break in Slow Solar Wind during PSP Encounter 2
Abstract:

Magnetic field fluctuations in the solar wind are commonly observed to follow a power-law spectrum. Near proton-kinetic scales, a spectral break occurs that is commonly interpreted as a transition to kinetic turbulence. However, this transition is not yet entirely understood. By studying the scaling of the break with various plasma properties, it may be possible to constrain the processes leading to the onset of kinetic turbulence. Using data from the Parker Solar Probe, we measure the proton-scale break over a range of heliocentric distances, enabling a measurement of the transition from inertial to kinetic-scale turbulence under various plasma conditions. We find that the break frequency fb increases as the heliocentric distance r decreases in the slow solar wind following . . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 55 DOI: 10.3847/1538-4365/ab672d Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab672d
More Details

Authors: Desai M. I., Mitchell D. G., Szalay J. R., Roelof E. C., Giacalone J., et al.
Title: Properties of Suprathermal-through-energetic He Ions Associated with Stream Interaction Regions Observed over the Parker Solar Probe ’s First Two Orbits
Abstract:

The Integrated Science Investigation of the Sun (IS☉IS) suite on board NASA's Parker Solar Probe (PSP) observed six distinct enhancements in the intensities of suprathermal-through-energetic (∼0.03─3 MeV nucleon−1) He ions associated with corotating or stream interaction regions (CIR or SIR) during its first two orbits. Our results from a survey of the time histories of the He intensities, spectral slopes, and anisotropies and the event-averaged energy spectra during these events show the following: (1) In the two strongest enhancements, seen at 0.35 and 0.85 au, the higher-energy ions arrive and maximize later than those at lower energies. In the event seen at 0.35 au, the He ions arrive when PSP was away from the SIR trailing edge and entered the rarefaction region . . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 56 DOI: 10.3847/1538-4365/ab65ef Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab65efhttps://iopscience.iop.org/article/10.3847/1538-4365/ab65ef/
More Details

Authors: DeForest C. E., Howard T. A., and McComas D. J.
Title: INBOUND WAVES IN THE SOLAR CORONA: A DIRECT INDICATOR OF ALFVÉN SURFACE LOCATION
Abstract:

The tenuous supersonic solar wind that streams from the top of the corona passes through a natural boundary—the Alfvén surface—that marks the causal disconnection of individual packets of plasma and magnetic flux from the Sun itself. The Alfvén surface is the locus where the radial motion of the accelerating solar wind passes the radial Alfvén speed, and therefore any displacement of material cannot carry information back down into the corona. It is thus the natural outer boundary of the solar corona and the inner boundary of interplanetary space. Using a new and unique motion analysis to separate inbound and outbound motions in synoptic visible-light image sequences from the COR2 coronagraph on board the STEREO-A spacecraft, we have identified inbound wave motion in the outer co. . .
Date: 06/2014 Publisher: The Astrophysical Journal Pages: 124 DOI: 10.1088/0004-637X/787/2/124 Available at: http://stacks.iop.org/0004-637X/787/i=2/a=124?key=crossref.8ca79a982204ddd2b4922cc108364616
More Details

Authors: DeForest C. E., Howard T. A., and McComas D. J.
Title: INBOUND WAVES IN THE SOLAR CORONA: A DIRECT INDICATOR OF ALFVÉN SURFACE LOCATION
Abstract:

The tenuous supersonic solar wind that streams from the top of the corona passes through a natural boundary—the Alfvén surface—that marks the causal disconnection of individual packets of plasma and magnetic flux from the Sun itself. The Alfvén surface is the locus where the radial motion of the accelerating solar wind passes the radial Alfvén speed, and therefore any displacement of material cannot carry information back down into the corona. It is thus the natural outer boundary of the solar corona and the inner boundary of interplanetary space. Using a new and unique motion analysis to separate inbound and outbound motions in synoptic visible-light image sequences from the COR2 coronagraph on board the STEREO-A spacecraft, we have identified inbound wave motion in the outer co. . .
Date: 06/2014 Publisher: The Astrophysical Journal Pages: 124 DOI: 10.1088/0004-637X/787/2/124 Available at: http://stacks.iop.org/0004-637X/787/i=2/a=124?key=crossref.8ca79a982204ddd2b4922cc108364616
More Details

Authors: de Wit Thierry Dudok, Krasnoselskikh Vladimir V., Bale Stuart D., Bonnell John W., Bowen Trevor A., et al.
Title: Switchbacks in the Near-Sun Magnetic Field: Long Memory and Impact on the Turbulence Cascade
Abstract:

One of the most striking observations made by Parker Solar Probe during its first solar encounter is the omnipresence of rapid polarity reversals in a magnetic field that is otherwise mostly radial. These so-called switchbacks strongly affect the dynamics of the magnetic field. We concentrate here on their macroscopic properties. First, we find that these structures are self-similar, and have neither a characteristic magnitude, nor a characteristic duration. Their waiting time statistics show evidence of aggregation. The associated long memory resides in their occurrence rate, and is not inherent to the background fluctuations. Interestingly, the spectral properties of inertial range turbulence differ inside and outside of switchback structures; in the latter the 1/f range extends to hi. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 39 DOI: 10.3847/1538-4365/ab5853 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab5853
More Details

Authors: de Wit Thierry Dudok, Krasnoselskikh Vladimir V., Bale Stuart D., Bonnell John W., Bowen Trevor A., et al.
Title: Switchbacks in the Near-Sun Magnetic Field: Long Memory and Impact on the Turbulence Cascade
Abstract:

One of the most striking observations made by Parker Solar Probe during its first solar encounter is the omnipresence of rapid polarity reversals in a magnetic field that is otherwise mostly radial. These so-called switchbacks strongly affect the dynamics of the magnetic field. We concentrate here on their macroscopic properties. First, we find that these structures are self-similar, and have neither a characteristic magnitude, nor a characteristic duration. Their waiting time statistics show evidence of aggregation. The associated long memory resides in their occurrence rate, and is not inherent to the background fluctuations. Interestingly, the spectral properties of inertial range turbulence differ inside and outside of switchback structures; in the latter the 1/f range extends to hi. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 39 DOI: 10.3847/1538-4365/ab5853 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab5853
More Details

Authors: de Patoul Judith, Foullon Claire, and Riley Pete
Title: 3D ELECTRON DENSITY DISTRIBUTIONS IN THE SOLAR CORONA DURING SOLAR MINIMA: ASSESSMENT FOR MORE REALISTIC SOLAR WIND MODELING
Abstract:

Knowledge of the electron density distribution in the solar corona put constraints on the magnetic field configurations for coronal modeling and on initial conditions for solar wind modeling. We work with polarized SOHO/LASCO-C2 images from the last two recent minima of solar activity (1996-1997 and 2008-2010), devoid of coronal mass ejections. The goals are to derive the 4D electron density distributions in the corona by applying a newly developed time-dependent tomographic reconstruction method and to compare the results between the two solar minima and with two magnetohydrodynamic models. First, we confirm that the values of the density distribution in thermodynamic models are more realistic than in polytropic ones. The tomography provides more accurate distributions in the polar reg. . .
Date: 11/2015 Publisher: The Astrophysical Journal Pages: 68 DOI: 10.1088/0004-637X/814/1/68 Available at: http://stacks.iop.org/0004-637X/814/i=1/a=68?key=crossref.845557cfda4b2a3786588c8b62dbb093
More Details

Authors: de Patoul Judith, Foullon Claire, and Riley Pete
Title: 3D ELECTRON DENSITY DISTRIBUTIONS IN THE SOLAR CORONA DURING SOLAR MINIMA: ASSESSMENT FOR MORE REALISTIC SOLAR WIND MODELING
Abstract:

Knowledge of the electron density distribution in the solar corona put constraints on the magnetic field configurations for coronal modeling and on initial conditions for solar wind modeling. We work with polarized SOHO/LASCO-C2 images from the last two recent minima of solar activity (1996-1997 and 2008-2010), devoid of coronal mass ejections. The goals are to derive the 4D electron density distributions in the corona by applying a newly developed time-dependent tomographic reconstruction method and to compare the results between the two solar minima and with two magnetohydrodynamic models. First, we confirm that the values of the density distribution in thermodynamic models are more realistic than in polytropic ones. The tomography provides more accurate distributions in the polar reg. . .
Date: 11/2015 Publisher: The Astrophysical Journal Pages: 68 DOI: 10.1088/0004-637X/814/1/68 Available at: http://stacks.iop.org/0004-637X/814/i=1/a=68?key=crossref.845557cfda4b2a3786588c8b62dbb093
More Details

Authors: Daloz Anne S., Camargo S. J., Kossin J. P., Emanuel K., Horn M., et al.
Title: Cluster Analysis of Downscaled and Explicitly Simulated North Atlantic Tropical Cyclone Tracks
Abstract:

A realistic representation of the North Atlantic tropical cyclone tracks is crucial as it allows, for example, explaining potential changes in U.S. landfalling systems. Here, the authors present a tentative study that examines the ability of recent climate models to represent North Atlantic tropical cyclone tracks. Tracks from two types of climate models are evaluated: explicit tracks are obtained from tropical cyclones simulated in regional or global climate models with moderate to high horizontal resolution (1°–0.25°), and downscaled tracks are obtained using a downscaling technique with large-scale environmental fields from a subset of these models. For both configurations, tracks are objectively separated into four groups using a cluster technique, leading to a zonal and a merid. . .
Date: 02/2015 Publisher: Journal of Climate Pages: 1333 - 1361 DOI: 10.1175/JCLI-D-13-00646.1 Available at: http://journals.ametsoc.org/doi/10.1175/JCLI-D-13-00646.1
More Details