Found 209 results
Author Title Type [ Year(Desc)]
2020
Authors: Zhao L.-L., Zank G. P., Adhikari L., Hu Q., Kasper J. C., et al.
Title: Identification of Magnetic Flux Ropes from Parker Solar Probe Observations during the First Encounter
Abstract:

The Parker Solar Probe (PSP) observed an interplanetary coronal mass ejection (ICME) event during its first orbit around the Sun, among many other events. This event is analyzed by applying a wavelet analysis technique to obtain the reduced magnetic helicity, cross helicity, and residual energy, the first two of which are magnetohydrodynamics (MHD) invariants. Our results show that the ICME, as a large-scale magnetic flux rope, possesses high magnetic helicity, very low cross helicity, and highly negative residual energy, thus pointing to a magnetic fluctuation dominated structure. Using the same technique, we also search for small-scale coherent magnetic flux rope structures during the period from 2018 October 22 to November 21, which are intrinsic to quasi-two-dimensional MHD turbulen. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 26 DOI: 10.3847/1538-4365/ab4ff1 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab4ff1
More Details

Authors: Scolini C., Chané E., Pomoell J., Rodriguez L., and Poedts S.
Title: Improving Predictions of High-Latitude Coronal Mass Ejections Throughout the Heliosphere
Abstract:

Predictions of the impact of coronal mass ejections (CMEs) in the heliosphere mostly rely on cone CME models, whose performances are optimized for locations in the ecliptic plane and at 1 AU (e.g., at Earth). Progresses in the exploration of the inner heliosphere, however, advocate the need to assess their performances at both higher latitudes and smaller heliocentric distances. In this work, we perform 3-D magnetohydrodynamics simulations of artificial cone CMEs using the EUropean Heliospheric FORecasting Information Asset (EUHFORIA), investigating the performances of cone models in the case of CMEs launched at high latitudes. We compare results obtained initializing CMEs using a commonly applied approximated (Euclidean) distance relation and using a proper (great circle) distance rela. . .
Date: 03/2020 Publisher: Space Weather DOI: 10.1029/2019SW002246 Available at: https://onlinelibrary.wiley.com/doi/abs/10.1029/2019SW002246
More Details

Authors: Malaspina David M., Szalay Jamey R., Pokorný Petr, Page Brent, Bale Stuart D., et al.
Title: In Situ Observations of Interplanetary Dust Variability in the Inner Heliosphere
Abstract:

This work examines the variation of interplanetary dust count rates and directionality during the first three solar encounters made by the Parker Solar Probe spacecraft, covering distances between 0.65 au (\~140 solar radii, RS) and 0.16 au (\~35 RS). Dust detections are made by the FIELDS instrument via plasma clouds, produced by impact ionization of dust grains on spacecraft surfaces and resultant spacecraft potential perturbations. Dust count rates and inferred densities are found to vary by \~50% between the three solar encounters (\~5 months per orbit), with most of the variation concentrated below 0.23 au (\~50RS). Dust count rates and directionality, as well as the encounter-to-encounter variability in both quantities are found to be consistent wi. . .
Date: 04/2020 Publisher: The Astrophysical Journal Pages: 115 DOI: 10.3847/1538-4357/ab799b Available at: https://iopscience.iop.org/article/10.3847/1538-4357/ab799b
More Details

Authors: Squire J., Chandran B. D. G., and Meyrand R.
Title: In-situ Switchback Formation in the Expanding Solar Wind
Abstract:

Recent near-Sun solar-wind observations from Parker Solar Probe have found a highly dynamic magnetic environment, permeated by abrupt radial-field reversals, or "switchbacks." We show that many features of the observed turbulence are reproduced by a spectrum of Alfvénic fluctuations advected by a radially expanding flow. Starting from simple superpositions of low-amplitude outward-propagating waves, our expanding-box compressible magnetohydrodynamic simulations naturally develop switchbacks because (i) the normalized amplitude of waves grows due to expansion and (ii) fluctuations evolve toward spherical polarization (i.e., nearly constant field strength). These results suggest that switchbacks form in situ in the expanding solar wind and are not indicative of impulsive processes in the. . .
Date: 03/2020 Publisher: The Astrophysical Journal Pages: L2 DOI: 10.3847/2041-8213/ab74e1 Available at: https://iopscience.iop.org/article/10.3847/2041-8213/ab74e1
More Details

Authors: Bowen Trevor A., Mallet Alfred, Huang Jia, Klein Kristopher G., Malaspina David M., et al.
Title: Ion-scale Electromagnetic Waves in the Inner Heliosphere
Abstract:

Understanding the physical processes in the solar wind and corona that actively contribute to heating, acceleration, and dissipation is a primary objective of NASA’s Parker Solar Probe (PSP) mission. Observations of circularly polarized electromagnetic waves at ion scales suggest that cyclotron resonance and wave-particle interactions are dynamically relevant in the inner heliosphere. A wavelet-based statistical study of circularly polarized events in the first perihelion encounter of PSP demonstrates that transverse electromagnetic waves at ion resonant scales are observed in 30-50% of radial field intervals. Average wave amplitudes of approximately 4 nT are measured, while the mean duration of wave events is on the order of 20 s; however, long-duration wave events can exist without . . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 66 DOI: 10.3847/1538-4365/ab6c65 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/
More Details

Authors: Phan T. D., Bale S. D., Eastwood J. P., Lavraud B., Drake J. F., et al.
Title: Parker Solar Probe In Situ Observations of Magnetic Reconnection Exhausts during Encounter 1
Abstract:

Magnetic reconnection in current sheets converts magnetic energy into particle energy. The process may play an important role in the acceleration and heating of the solar wind close to the Sun. Observations from Parker Solar Probe (PSP) provide a new opportunity to study this problem, as it measures the solar wind at unprecedented close distances to the Sun. During the first orbit, PSP encountered a large number of current sheets in the solar wind through perihelion at 35.7 solar radii. We performed a comprehensive survey of these current sheets and found evidence for 21 reconnection exhausts. These exhausts were observed in heliospheric current sheets, coronal mass ejections, and regular solar wind. However, we find that the majority of current sheets encountered around perihelion, whe. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 34 DOI: 10.3847/1538-4365/ab55ee Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab55ee
More Details

Authors: Battams Karl, Knight Matthew M., Kelley Michael S. P., Gallagher Brendan M., Howard Russell A., et al.
Title: Parker Solar Probe Observations of a Dust Trail in the Orbit of (3200) Phaethon
Abstract:

We present the identification and preliminary analysis of a dust trail following the orbit of (3200) Phaethon as seen in white-light images recorded by the Wide-field Imager for Parker Solar Probe (WISPR) instrument on the NASA Parker Solar Probe (PSP) mission. During PSP’s first solar encounter in 2018 November, a dust trail following Phaethon’s orbit was visible for several days and crossing two fields of view. Preliminary analyses indicate this trail to have a visual magnitude of 15.8 ± 0.3 per pixel and a surface brightness of 25.0 mag arcsec-2 as seen by PSP/WISPR from a distance of ̃0.2 au from the trail. We estimate the total mass of the stream to be ̃(0.4-1.3) × 1012 kg, which is consistent with, though slightly underestimates, the assumed mass of t. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 64 DOI: 10.3847/1538-4365/ab6c68 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab6c68
More Details

Authors: Huang S. Y., Zhang J., Sahraoui F., He J. S., Yuan Z. G., et al.
Title: Kinetic Scale Slow Solar Wind Turbulence in the Inner Heliosphere: Coexistence of Kinetic Alfvén Waves and Alfvén Ion Cyclotron Waves
Abstract:

The nature of the plasma wave modes around the ion kinetic scales in highly Alfvénic slow solar wind turbulence is investigated using data from the NASA’s Parker Solar Probe taken in the inner heliosphere, at 0.18 au from the Sun. The joint distribution of the normalized reduced magnetic helicity σmRB, τ) is obtained, where θRB is the angle between the local mean magnetic field and the radial direction and τ is the temporal scale. Two populations around ion scales are identified: the first population has σmRB, τ) < 0 for frequencies (in the spacecraft frame) ranging from 2.1 to 26 Hz for 60° < θRB < 130°, corresponding to kinetic Alfvén waves (KAWs), and the second population has σmDate: 07/2020 Publisher: The Astrophysical Journal Pages: L3 DOI: 10.3847/2041-8213/ab9abb Available at: https://iopscience.iop.org/article/10.3847/2041-8213/ab9abbhttps://iopscience.iop.org/article/10.3847/2041-8213/ab9abb/
More Details

Authors: Vech Daniel, Kasper Justin C., Klein Kristopher G., Huang Jia, Stevens Michael L., et al.
Title: Kinetic-scale Spectral Features of Cross Helicity and Residual Energy in the Inner Heliosphere
Abstract:

In this work, we present the first results from the flux angle (FA) operation mode of the Faraday Cup instrument on board the Parker Solar Probe (PSP). The FA mode allows rapid measurements of phase space density fluctuations close to the peak of the proton velocity distribution function with a cadence of 293 Hz. This approach provides an invaluable tool for understanding kinetic-scale turbulence in the solar wind and solar corona. We describe a technique to convert the phase space density fluctuations into vector velocity components and compute several turbulence parameters, such as spectral index, residual energy, and cross helicity during two intervals when the FA mode was used in PSP’s first encounter at 0.174 au distance from the Sun.


Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 52 DOI: 10.3847/1538-4365/ab60a2 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab60a2
More Details
Authors: Krasnoselskikh V., Larosa A., Agapitov O., de Wit Dudok, Moncuquet M., et al.
Title: Localized Magnetic-field Structures and Their Boundaries in the Near-Sun Solar Wind from Parker Solar Probe Measurements
Abstract:

One of the discoveries of the Parker Solar Probe during its first encounters with the Sun is ubiquitous presence of relatively small-scale structures standing out as sudden deflections of the magnetic field. They were named "switchbacks" since some of them show a full reversal of the radial component of the magnetic field and then return to "regular" conditions. We carried out an analysis of three typical switchback structures having different characteristics: I. Alfvénic structure, where the variations of the magnetic field components take place while conserving the magnitude of the magnetic field; II. Compressional structure, where the magnitude of the field varies together with changes of its components; and III. Structure manifesting full reversal of the magnetic field, presumably . . .
Date: 04/2020 Publisher: The Astrophysical Journal Pages: 93 DOI: 10.3847/1538-4357/ab7f2d Available at: https://iopscience.iop.org/article/10.3847/1538-4357/ab7f2d
More Details

Authors: Badman Samuel T., Bale Stuart D., Oliveros Juan C. Martín, Panasenco Olga, Velli Marco, et al.
Title: Magnetic Connectivity of the Ecliptic Plane within 0.5 au: Potential Field Source Surface Modeling of the First Parker Solar Probe Encounter
Abstract:

We compare magnetic field measurements taken by the FIELDS instrument on board Parker Solar Probe (PSP) during its first solar encounter to predictions obtained by potential field source surface (PFSS) modeling. Ballistic propagation is used to connect the spacecraft to the source surface. Despite the simplicity of the model, our results show striking agreement with PSP’s first observations of the heliospheric magnetic field from ̃0.5 au (107.5 R) down to 0.16 au (35.7 R). Further, we show the robustness of the agreement is improved both by allowing the photospheric input to the model to vary in time, and by advecting the field from PSP down to the PFSS model domain using in situ PSP/Solar Wind Electrons Alphas and Protons measurements of the solar wind sp. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 23 DOI: 10.3847/1538-4365/ab4da7 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab4da7
More Details

Authors: Farrell W. M., MacDowall R. J., Gruesbeck J. R., Bale S. D., and Kasper J. C.
Title: Magnetic Field Dropouts at Near-Sun Switchback Boundaries: A Superposed Epoch Analysis
Abstract:

During Parker Solar Probe's first close encounter with the Sun in early 2018 November, a large number of impulsive rotations in the magnetic field were detected within 50 Rs; these also occurred in association with short-lived impulsive solar wind bursts in speed. These impulsive features are now called "switchback" events. We examined a set of these switchbacks where the boundary transition into and out of the switchback was abrupt, with fast B rotations and simultaneous solar wind speed changes occurring on timescales of less than ∼10 s; these thus appear as step function-like changes in the radial component of B and V. Our objective was to search for any diamagnetic effects that might occur especially if the boundaries are associated with quick changes in density (i.e., . . .
Date: 08/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 28 DOI: 10.3847/1538-4365/ab9eba Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab9ebahttps://iopscience.iop.org/article/10.3847/1538-4365/ab9eba/
More Details

Authors: Tenerani Anna, Velli Marco, Matteini Lorenzo, Réville Victor, Shi Chen, et al.
Title: Magnetic Field Kinks and Folds in the Solar Wind
Abstract:

Parker Solar Probe (PSP) observations during its first encounter at 35.7 R have shown the presence of magnetic field lines that are strongly perturbed to the point that they produce local inversions of the radial magnetic field, known as switchbacks. Their counterparts in the solar wind velocity field are local enhancements in the radial speed, or jets, displaying (in all components) the velocity-magnetic field correlation typical of large amplitude Alfvén waves propagating away from the Sun. Switchbacks and radial jets have previously been observed over a wide range of heliocentric distances by Helios, Wind, and Ulysses, although they were prevalent in significantly faster streams than seen at PSP. Here we study via numerical magnetohydrodynamics simulations the evolutio. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 32 DOI: 10.3847/1538-4365/ab53e1 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab53e1
More Details

Authors: Parashar T. N., Goldstein M. L., Maruca B. A., Matthaeus W. H., Ruffolo D., et al.
Title: Measures of Scale-dependent Alfvénicity in the First PSP Solar Encounter
Abstract:

The solar wind shows periods of highly Alfvénic activity, where velocity fluctuations and magnetic fluctuations are aligned or antialigned with each other. It is generally agreed that solar wind plasma velocity and magnetic field fluctuations observed by the Parker Solar Probe (PSP) during the first encounter are mostly highly Alfvénic. However, quantitative measures of Alfvénicity are needed to understand how the characterization of these fluctuations compares with standard measures from prior missions in the inner and outer heliosphere, in fast wind and slow wind, and at high and low latitudes. To investigate this issue, we employ several measures to quantify the extent of Alfvénicity—the Alfvén ratio rA, the normalized cross helicity σc, the normalized r. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 58 DOI: 10.3847/1538-4365/ab64e6 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab64e6
More Details

Authors: Bowen T. A., Bale S. D., Bonnell J. W., de Wit Dudok, Goetz K., et al.
Title: A Merged Search-Coil and Fluxgate Magnetometer Data Product for Parker Solar Probe FIELDS
Abstract:

NASA’s Parker Solar Probe (PSP) mission is currently investigating the local plasma environment of the inner heliosphere (<0.25 R) using both in situ and remote sensing instrumentation. Connecting signatures of microphysical particle heating and acceleration processes to macroscale heliospheric structure requires sensitive measurements of electromagnetic fields over a large range of physical scales. The FIELDS instrument, which provides PSP with in situ measurements of electromagnetic fields of the inner heliosphere and corona, includes a set of three vector magnetometers: two fluxgate magnetometers (MAGs) and a single inductively coupled search-coil magnetometer (SCM). Together, the three FIELDS magnetometers enable measurements of the local magnetic field with a ban. . .
Date: 05/2020 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2020JA027813 Available at: https://onlinelibrary.wiley.com/doi/abs/10.1029/2020JA027813https://onlinelibrary.wiley.com/doi/pdf/10.1029/2020JA027813
More Details

Authors: Zhao Lulu, Zhang Ming, and Lario David
Title: Modeling the Transport Processes of a Pair of Solar Energetic Particle Events Observed by Parker Solar Probe Near Perihelion
Abstract:

We present model calculations of the transport processes of solar energetic particles in the corona and interplanetary medium for two events detected by Parker Solar Probe near its second perihelion on 2019 April 2 and April 4. In the 2019 April 2 event, the <100 keV proton differential intensity measured by the Integrated Science Investigation of the Sun Low-Energy Energetic Particle instrument increased by more than a factor of 10 above the pre-event intensity, whereas the \~1 MeV proton differential intensity detected by the High-Energy Energetic Particle Instrument did not show any intensity enhancement. In the 2019 April 4 event, the \~1 MeV proton intensity showed an increase of more than a factor of 100 above the pre-event intensity, but the <100 keV proton intensity enhanc. . .
Date: 07/2020 Publisher: The Astrophysical Journal Pages: 16 DOI: 10.3847/1538-4357/ab97b3 Available at: https://iopscience.iop.org/article/10.3847/1538-4357/ab97b3https://iopscience.iop.org/article/10.3847/1538-4357/ab97b3/
More Details

Authors: Wood Brian E., Hess Phillip, Howard Russell A., Stenborg Guillermo, and Wang Yi-Ming
Title: Morphological Reconstruction of a Small Transient Observed by Parker Solar Probe on 2018 November 5
Abstract:

On 2018 November 5, about 24 hr before the first close perihelion passage of Parker Solar Probe (PSP), a coronal mass ejection (CME) entered the field of view of the inner detector of the Wide-field Imager for Solar PRobe (WISPR) instrument on board PSP, with the northward component of its trajectory carrying the leading edge of the CME off the top edge of the detector about four hours after its first appearance. We connect this event to a very small jetlike transient observed from 1 au by coronagraphs on both the SOlar and Heliospheric Observatory (SOHO) and the A component of the Solar TErrestrial RElations Observatory mission (STEREO-A). This allows us to make the first three-dimensional reconstruction of a CME structure considering both observations made very close to the Sun and im. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 28 DOI: 10.3847/1538-4365/ab5219 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab5219
More Details

Authors: Szalay J. R., Pokorný P., Bale S. D., Christian E. R., Goetz K., et al.
Title: The Near-Sun Dust Environment: Initial Observations from Parker Solar Probe
Abstract:

The Parker Solar Probe (PSP) spacecraft has flown into the densest, previously unexplored, innermost region of our solar system’s zodiacal cloud. While PSP does not have a dedicated dust detector, multiple instruments on the spacecraft are sensitive to the effects of meteoroid bombardment. Here, we discuss measurements taken during PSP’s second orbit and compare them to models of the zodiacal cloud’s dust distribution. Comparing the radial impact rate trends and the timing and location of a dust impact to an energetic particle detector, we find the impactor population to be consistent with dust grains on hyperbolic orbits escaping the solar system. Assuming PSP’s impact environment is dominated by hyperbolic impactors, the total quantity of dust ejected from our solar system is . . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 27 DOI: 10.3847/1538-4365/ab50c1 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab50c1
More Details

Authors: Němeček Zdeněk, Ďurovcová Tereza, Šafránková Jana, Richardson John D., Šimůnek Jiří, et al.
Title: (Non)radial Solar Wind Propagation through the Heliosphere
Abstract:

The solar wind nonradial velocity components observed beyond the Alfvén point are usually attributed to waves, the interaction of different streams, or other transient phenomena. However, Earth-orbiting spacecraft as well as monitors at L1 indicate systematic deviations of the wind velocity from the radial direction. Since these deviations are of the order of several degrees, the calibration of the instruments is often questioned. This paper investigates for the first time the evolution of nonradial components of the solar wind flow along the path from ≍0.17 to 10 au. A comparison of observations at 1 au with those closer to or farther from the Sun based on measurements of many spacecraft at different locations in the heliosphere (Parker Solar Probe, Helios 1 and 2, Wind, Advanced Co. . .
Date: 07/2020 Publisher: The Astrophysical Journal Pages: L39 DOI: 10.3847/2041-8213/ab9ff7 Available at: https://iopscience.iop.org/article/10.3847/2041-8213/ab9ff7https://iopscience.iop.org/article/10.3847/2041-8213/ab9ff7
More Details

Authors: Roberts Aaron, Karimabadi Homa, Sipes Tamara, Ko Yuan-Kuen, and Lepri Susan
Title: Objectively Determining States of the Solar Wind Using Machine Learning
Abstract:

Conclusively determining the states of the solar wind will aid in tracing the origins of those states to the Sun, and in the process help to find the wind’s origin and acceleration mechanism(s). Prior studies have characterized the various states of the wind, making lists that are only partially based on objective criteria; different approaches obtain substantially different results. To uncover the unbiased states of the solar wind, we use "k-means clustering"—an unsupervised machine learning method—including constructed multipoint variables. The method allows exploration of different descriptive state variables and numbers of fundamental states (clusters). We show that the clusters reveal structures similar to those found by more ad hoc means, including coronal hole wind, interpl. . .
Date: 02/2020 Publisher: The Astrophysical Journal Pages: 153 DOI: 10.3847/1538-4357/ab5a7a Available at: https://iopscience.iop.org/article/10.3847/1538-4357/ab5a7a
More Details

Authors: Bandyopadhyay Riddhi, Matthaeus W. H., Parashar T. N., Chhiber R., Ruffolo D., et al.
Title: Observations of Energetic-particle Population Enhancements along Intermittent Structures near the Sun from the Parker Solar Probe
Abstract:

Observations at 1 au have confirmed that enhancements in measured energetic-particle (EP) fluxes are statistically associated with "rough" magnetic fields, i.e., fields with atypically large spatial derivatives or increments, as measured by the Partial Variance of Increments (PVI) method. One way to interpret this observation is as an association of the EPs with trapping or channeling within magnetic flux tubes, possibly near their boundaries. However, it remains unclear whether this association is a transport or local effect; i.e., the particles might have been energized at a distant location, perhaps by shocks or reconnection, or they might experience local energization or re-acceleration. The Parker Solar Probe (PSP), even in its first two orbits, offers a unique opportunity to study. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 61 DOI: 10.3847/1538-4365/ab6220 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab6220
More Details

Authors: Qudsi R. A., Maruca B. A., Matthaeus W. H., Parashar T. N., Bandyopadhyay Riddhi, et al.
Title: Observations of Heating along Intermittent Structures in the Inner Heliosphere from PSP Data
Abstract:

The solar wind proton temperature at 1 au has been found to be correlated with small-scale intermittent magnetic structures, i.e., regions with enhanced temperature are associated with coherent structures, such as current sheets. Using Parker Solar Probe data from the first encounter, we study this association using measurements of the radial proton temperature, employing the partial variance of increments (PVI) technique to identify intermittent magnetic structures. We observe that the probability density functions of high PVI events have higher median temperatures than those with lower PVI. The regions in space where PVI peaks were also locations that had enhanced temperatures when compared with similar regions, suggesting a heating mechanism in the young solar wind that is associated. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 46 DOI: 10.3847/1538-4365/ab5c19 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab5c19
More Details

Authors: Leske R. A., Christian E. R., Cohen C. M. S., Cummings A. C., Davis A. J., et al.
Title: Observations of the 2019 April 4 Solar Energetic Particle Event at the Parker Solar Probe
Abstract:

A solar energetic particle event was detected by the Integrated Science Investigation of the Sun (IS☉IS) instrument suite on Parker Solar Probe (PSP) on 2019 April 4 when the spacecraft was inside of 0.17 au and less than 1 day before its second perihelion, providing an opportunity to study solar particle acceleration and transport unprecedentedly close to the source. The event was very small, with peak 1 MeV proton intensities of ̃0.3 particles (cm2 sr s MeV)-1, and was undetectable above background levels at energies above 10 MeV or in particle detectors at 1 au. It was strongly anisotropic, with intensities flowing outward from the Sun up to 30 times greater than those flowing inward persisting throughout the event. Temporal association between particle incre. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 35 DOI: 10.3847/1538-4365/ab5712 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab5712
More Details

Authors: Verniero J. L., Larson D. E., Livi R., Rahmati A., McManus M. D., et al.
Title: Parker Solar Probe Observations of Proton Beams Simultaneous with Ion-scale Waves
Abstract:

Parker Solar Probe (PSP), NASA’s latest and closest mission to the Sun, is on a journey to investigate fundamental enigmas of the inner heliosphere. This paper reports initial observations made by the Solar Probe Analyzer for Ions (SPAN-I), one of the instruments in the Solar Wind Electrons Alphas and Protons instrument suite. We address the presence of secondary proton beams in concert with ion-scale waves observed by FIELDS, the electromagnetic fields instrument suite. We show two events from PSP’s second orbit that demonstrate signatures consistent with wave-particle interactions. We showcase 3D velocity distribution functions (VDFs) measured by SPAN-I during times of strong wave power at ion scales. From an initial instability analysis, we infer that the VDFs departed far enough. . .
Date: 05/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 5 DOI: 10.3847/1538-4365/ab86af Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab86afhttps
More Details

Authors: Meyer-Vernet Nicole, and Moncuquet Michel
Title: Plasma Waves in Space: The Importance of Properly Accounting for the Measuring Device
Abstract:

Electric fields are generally measured or calculated using two intuitive assumptions: (1) the electric field equals the voltage divided by the antenna length when the antenna is electromagnetically short (2) the antenna responds best to electric field along its length. Both assumptions are often incorrect for electrostatic fields because they scale as the Debye length or as the electron gyroradius, which may be smaller than the antenna length. Taking into account this little-known fact enables us to complete or correct several recent papers on plasma spontaneous fluctuations in various solar system environments.


Date: 03/2020 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA027723 Available at: https://onlinelibrary.wiley.com/doi/abs/10.1029/2019JA027723
More Details

Pages