Found 209 results
Author Title Type [ Year(Desc)]
2016
Authors: Fox N. J., Velli M. C., Bale S. D., Decker R., Driesman A., et al.
Title: The Solar Probe Plus Mission: Humanity’s First Visit to Our Star
Abstract:

Solar Probe Plus (SPP) will be the first spacecraft to fly into the low solar corona. SPP’s main science goal is to determine the structure and dynamics of the Sun’s coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Understanding these fundamental phenomena has been a top-priority science goal for over five decades, dating back to the 1958 Simpson Committee Report. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The mission design and the technology and engineering developments enable SPP to meet its science objectives to: (1) Trace the flow of energy that heats and accelerates the . . .
Date: 12/2016 Publisher: Space Science Reviews Pages: 7 - 48 DOI: 10.1007/s11214-015-0211-6 Available at: http://link.springer.com/10.1007/s11214-015-0211-6http://link.springer.com/content/pdf/10.1007/s11214-015-0211-6.pdf
More Details

Authors: Chhiber R, Usmanov AV, Matthaeus WH, and Goldstein ML
Title: SOLAR WIND COLLISIONAL AGE FROM A GLOBAL MAGNETOHYDRODYNAMICS SIMULATION
Abstract:

Simple estimates of the number of Coulomb collisions experienced by the interplanetary plasma to the point of observation, I.e., the “collisional age”, can be usefully employed in the study of non-thermal features of the solar wind. Usually these estimates are based on local plasma properties at the point of observation. Here we improve the method of estimation of the collisional age by employing solutions obtained from global three-dimensional magnetohydrodynamics simulations. This enables evaluation of the complete analytical expression for the collisional age without using approximations. The improved estimation of the collisional timescale is compared with turbulence and expansion timescales to assess the relative importance of collisions. The collisional age computed using the . . .
Date: 04/2016 Publisher: The Astrophysical Journal Pages: 34 DOI: 10.3847/0004-637X/821/1/34 Available at: http://stacks.iop.org/0004-637X/821/i=1/a=34?key=crossref.788f196bae255efe123dabca17bb586dhttp://stacks.iop.org/0004-637X/821/i=1/a=34/pdfhttp://stacks.iop.org/0004-637X/821/i=1/a=34?key=crossref.788f196bae255efe123dabca17bb586d
More Details

Authors: Vourlidas Angelos, Howard Russell A., Plunkett Simon P., Korendyke Clarence M., Thernisien Arnaud F. R., et al.
Title: The Wide-Field Imager for Solar Probe Plus (WISPR)
Abstract: N/A
Date: 02/2015 Publisher: Space Science Reviews Pages: 83 - 130 DOI: 10.1007/s11214-014-0114-y Available at: http://link.springer.com/content/pdf/10.1007/s11214-014-0114-y.pdf
More Details
2017
Authors: Kong Xiangliang, Guo Fan, Giacalone Joe, Li Hui, and Chen Yao
Title: The Acceleration of High-energy Protons at Coronal Shocks: The Effect of Large-scale Streamer-like Magnetic Field Structures
Abstract:

Recent observations have shown that coronal shocks driven by coronal mass ejections can develop and accelerate particles within several solar radii in large solar energetic particle (SEP) events. Motivated by this, we present an SEP acceleration study that including the process in which a fast shock propagates through a streamer-like magnetic field with both closed and open field lines in the low corona region. The acceleration of protons is modeled by numerically solving the Parker transport equation with spatial diffusion both along and across the magnetic field. We show that particles can be sufficiently accelerated to up to several hundred MeV within 2-3 solar radii. When the shock propagates through a streamer-like magnetic field, particles are more efficiently accelerated compared. . .
Date: 12/2017 Publisher: The Astrophysical Journal Pages: 38 DOI: 10.3847/1538-4357/aa97d7 Available at: http://stacks.iop.org/0004-637X/851/i=1/a=38?key=crossref.2009ec10fbd1f6f8cd1462070076984f
More Details

Authors: Wiedenbeck M. E., Angold N. G., Birdwell B., Burnham J. A., Christian E. R., et al.
Title: Capabilities and Performance of the High-Energy Energetic-Particles Instrument for the Parker Solar Probe Mission
Abstract:

NASA’s Parker Solar Probe (PSP) spacecraft (formerly Solar Probe Plus) is scheduled for launch in July 2018 with a planned heliocentric orbit that will carry it on a series of close passes by the Sun with perihelion distances that eventually will get below 10 solar radii. Among other in-situ and imaging sensors, the PSP payload includes the two-instrument “Integrated Science Investigation of the Sun” suite, which will make coordinated measurements of energetic ions and electrons. The high-energy instrument (EPI-Hi), operating in the MeV energy range, consists of three detector-telescopes using silicon solid-state sensors for measuring composition, energy spectra, angular distributions, and time structure in solar energetic particle events. The expected performance of this instrume. . .
Date: 10/2017 Publisher: Sissa Medialab DOI: 10.22323/1.301.0016 Available at: https://pos.sissa.it/301/016
More Details

Authors: Park Il Heung, Lee Hyun Su, Oh Suyeon, Kwak Young-Sil, Wiedenbeck M. E., et al.
Title: Capabilities and Performance of the High-Energy Energetic-Particles Instrument for the Parker Solar Probe Mission
Abstract:

NASA’s Parker Solar Probe (PSP) spacecraft (formerly Solar Probe Plus) is scheduled for launch in July 2018 with a planned heliocentric orbit that will carry it on a series of close passes by the Sun with perihelion distances that eventually will get below 10 solar radii. Among other in-situ and imaging sensors, the PSP payload includes the two-instrument “Integrated Science Investigation of the Sun” suite, which will make coordinated measurements of energetic ions and electrons. The high-energy instrument (EPI-Hi), operating in the MeV energy range, consists of three detector-telescopes using silicon solid-state sensors for measuring composition, energy spectra, angular distributions, and time structure in solar energetic particle events. The expected performance of this instrume. . .
Date: 10/2017 Publisher: Sissa Medialab DOI: 10.22323/1.301.0016 Available at: https://pos.sissa.it/301/016
More Details

Authors: Howes Gregory G., Klein Kristopher G., and Li Tak Chu
Title: Diagnosing collisionless energy transfer using field–particle correlations: Vlasov–Poisson plasmas
Abstract:

Turbulence plays a key role in the conversion of the energy of large-scale fields and flows to plasma heat, impacting the macroscopic evolution of the heliosphere and other astrophysical plasma systems. Although we have long been able to make direct spacecraft measurements of all aspects of the electromagnetic field and plasma fluctuations in near-Earth space, our understanding of the physical mechanisms responsible for the damping of the turbulent fluctuations in heliospheric plasmas remains incomplete. Here we propose an innovative field-particle correlation technique that can be used to measure directly the secular energy transfer from fields to particles associated with collisionless damping of the turbulent fluctuations. Furthermore, this novel procedure yields information about th. . .
Date: 02/2017 Publisher: Journal of Plasma Physics DOI: 10.1017/S0022377816001197 Available at: https://www.cambridge.org/core/product/identifier/S0022377816001197/type/journal_article
More Details

Authors: Vasylenko A.A.
Title: Future space missions: the inner region of the Solar system
Abstract:

The paper deals with an overview of space missions to explore the inner region of the Solar System, the nearest on time of their launch, namely, Probe Plus, Solar Orbiter, BepiColombo, EXOMars, and InSight. Each of them will study either the Sun or the planet of the Earth group. Their launches are planned for 2018-2020. We describe briefly predestination and technical equipment of spacecrafts, flight plan and scientific goal of these missions.


Date: 10/2017 Publisher: Kosm\`\ična nauka \`\i tehnolog\`\iâ Pages: 73 - 80 DOI: 10.15407/knit10.15407/knit2017.0310.15407/knit2017.03.073 Available at: http://space-scitechjournal.org.ua/enhttp://space-scitechjournal.org.ua/en/archive/2017/3http://space-scitechjournal.org.ua/en/archive/2017/3/07
More Details
Authors: Stenborg Guillermo, and Howard Russell A.
Title: A Heuristic Approach to Remove the Background Intensity on White-light Solar Images. I. STEREO /HI-1 Heliospheric Images
Abstract:

White-light coronal and heliospheric imagers observe scattering of photospheric light from both dust particles (the F-Corona) and free electrons in the corona (the K-corona). The separation of the two coronae is thus vitally important to reveal the faint K-coronal structures (e.g., streamers, co-rotating interaction regions, coronal mass ejections, etc.). However, the separation of the two coronae is very difficult, so we are content in defining a background corona that contains the F- and as little K- as possible. For both the LASCO-C2 and LASCO-C3 coronagraphs aboard the Solar and Heliospheric Observatory (SOHO) and the white-light imagers of the SECCHI suite aboard the Solar Terrestrial Relationships Observatory (STEREO), a time-dependent model of the background corona is generated f. . .
Date: 04/2017 Publisher: The Astrophysical Journal Pages: 68 DOI: 10.3847/1538-4357/aa6a12 Available at: http://stacks.iop.org/0004-637X/839/i=1/a=68?key=crossref.646085eac9cc08a12f0de51ac7dce969
More Details

Authors: Reid Hamish A. S., and Kontar Eduard P.
Title: Langmuir wave electric fields induced by electron beams in the heliosphere
Abstract:

Solar electron beams responsible for type III radio emission generate Langmuir waves as they propagate out from the Sun. The Langmuir waves are observed via in situ electric field measurements. These Langmuir waves are not smoothly distributed but occur in discrete clumps, commonly attributed to the turbulent nature of the solar wind electron density. Exactly how the density turbulence modulates the Langmuir wave electric fields is understood only qualitatively. Using weak turbulence simulations, we investigate how solar wind density turbulence changes the probability distribution functions, mean value and variance of the beam-driven electric field distributions. Simulations show rather complicated forms of the distribution that are dependent upon how the electric fields are sampled. Ge. . .
Date: 02/2017 Publisher: Astronomy & Astrophysics Pages: A44 DOI: 10.1051/0004-6361/201629697 Available at: http://www.aanda.org/10.1051/0004-6361/201629697http://www.aanda.org/10.1051/0004-6361/201629697/pdf
More Details

Authors: Hill M. E., Mitchell D. G., Andrews G. B., Cooper S. A., Gurnee R. S., et al.
Title: The Mushroom: A half-sky energetic ion and electron detector
Abstract:

We present a time-of-flight mass spectrometer design for the measurement of ions in the 30 keV to 10 MeV range for protons (up to 40 MeV and 150 MeV for He and heavy ions, respectively) and 30 keV to 1 MeV range for electrons, covering half of the sky with 80 apertures. The instrument, known as the "Mushroom," owing to its shape, solves the field of view problem for magnetospheric and heliospheric missions that employ three-axis stabilized spacecraft, yet still require extended angular coverage; the Mushroom is also compatible with a spinning spacecraft. The most important new feature of the Mushroom is the method through which uncomplicated electrostatic optics and clean position sensing combine to permit many apertures to fit into a compact, low-mass sensor head (or wedge), several of. . .
Date: 02/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022614 Available at: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2016JA022614
More Details

Authors: Meyer-Vernet N., Issautier K., and Moncuquet M.
Title: Quasi-thermal noise spectroscopy: The art and the practice
Abstract:

Quasi-thermal noise spectroscopy is an efficient tool for measuring in situ macroscopic plasma properties in space, using a passive wave receiver at the ports of an electric antenna. This technique was pioneered on spinning spacecraft carrying very long dipole antennas in the interplanetary medium—like ISEE-3 and Ulysses—whose geometry approached a "theoretician’s dream." The technique has been extended to other instruments in various types of plasmas on board different spacecraft and will be implemented on several missions in the near future. Such extensions require different theoretical modelizations, involving magnetized, drifting, or dusty plasmas with various particle velocity distributions and antennas being shorter, biased, or made of unequal wires. We give new analytical a. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics Pages: 7925 - 7945 DOI: 10.1002/2017JA024449 Available at: http://doi.wiley.com/10.1002/2017JA024449http://onlinelibrary.wiley.com/wol1/doi/10.1002/2017JA024449/fullpdf
More Details

Authors: Pulupa M., Bale S. D., Bonnell J. W., Bowen T. A., Carruth N., et al.
Title: The solar probe plus radio frequency spectrometer: Measurement requirements, analog design, and digital signal processing
Abstract:

The Radio Frequency Spectrometer (RFS) is a two-channel digital receiver and spectrometer, which will make remote sensing observations of radio waves and in situ measurements of electrostatic and electromagnetic fluctuations in the solar wind. A part of the FIELDS suite for Solar Probe Plus (SPP), the RFS is optimized for measurements in the inner heliosphere, where solar radio bursts are more intense and the plasma frequency is higher compared to previous measurements at distances of 1 AU or greater. The inputs to the RFS receiver are the four electric antennas mounted near the front of the SPP spacecraft and a single axis of the SPP search coil magnetometer (SCM). Each RFS channel selects a monopole or dipole antenna input, or the SCM input, via multiplexers. The primary data products. . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023345 Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016JA023345
More Details

Authors: Kasper J. C., Klein K. G., Weber T., Maksimovic M., Zaslavsky A., et al.
Title: A Zone of Preferential Ion Heating Extends Tens of Solar Radii from the Sun
Abstract:

The extreme temperatures and nonthermal nature of the solar corona and solar wind arise from an unidentified physical mechanism that preferentially heats certain ion species relative to others. Spectroscopic indicators of unequal temperatures commence within a fraction of a solar radius above the surface of the Sun, but the outer reach of this mechanism has yet to be determined. Here we present an empirical procedure for combining interplanetary solar wind measurements and a modeled energy equation including Coulomb relaxation to solve for the typical outer boundary of this zone of preferential heating. Applied to two decades of observations by the Wind spacecraft, our results are consistent with preferential heating being active in a zone extending from the transition region in the low. . .
Date: 11/2017 Publisher: The Astrophysical Journal Pages: 126 DOI: 10.3847/1538-4357/aa84b1 Available at: http://stacks.iop.org/0004-637X/849/i=2/a=126?key=crossref.a4fda357a12d19fd2ad1aa8a3897c78f
More Details

2018
Authors: Witze Alexandra
Title: Death-defying NASA mission will make humanity’s closest approach to the Sun
Abstract:

The Parker Solar Probe will dive into the sizzling solar corona to explore its mysteries.


Date: 07/2018 Publisher: Nature Pages: 452 - 453 DOI: 10.1038/d41586-018-05741-6 Available at: http://www.nature.com/articles/d41586-018-05741-6http://www.nature.com/articles/d41586-018-05741-6.pdfhttp://www.nature.com/articles/d41586-018-05741-6http://www.nature.com/articles/d41586-018-05741-6.pdf
More Details
Authors: Stansby D, Horbury T S, and Matteini L
Title: Diagnosing solar wind origins using in situ measurements in the inner heliosphere
Abstract:

Robustly identifying the solar sources of individual packets of solar wind measured in interplanetary space remains an open problem. We set out to see if this problem is easier to tackle using solar wind measurements closer to the Sun than 1 au, where the mixing and dynamical interaction of different solar wind streams is reduced. Using measurements from the Helios mission, we examined how the proton core temperature anisotropy and cross-helicity varied with distance. At 0.3 au there are two clearly separated anisotropic and isotropic populations of solar wind that are not distinguishable at 1 au. The anisotropic population is always Alfvénic and spans a wide range of speeds. In contrast the isotropic population has slow speeds, and contains a mix of Alfvénic wind with constant mass f. . .
Date: 01/2019 Publisher: Monthly Notices of the Royal Astronomical Society Pages: 1706 - 1714 DOI: 10.1093/mnras/sty2814 Available at: https://academic.oup.com/mnras/article/482/2/1706/5142296http://academic.oup.com/mnras/article-pdf/482/2/1706/26330049/sty2814.pdf
More Details

Authors: Yoon Peter H., Hwang Junga, ópez Rodrigo A., Kim Sunjung, and Lee Jaejin
Title: Electromagnetic Thermal Noise in Upper-Hybrid Frequency Range
Abstract:

The inner magnetosphere including the radiation belt and ring current environment is replete with high-frequency fluctuations with peak intensity occurring near upper-hybrid frequency and/or multiple harmonic electron cyclotron frequencies above and below the upper-hybrid frequency. Past and contemporary spacecraft missions, including the Van Allen Probes, were designed to detect the electric field spectrum only for these high-frequency fluctuations. Making use of the recently formulated generalized theory of electromagnetic spontaneous emission in thermal magnetized plasmas, it is shown that upper-hybrid/multiple harmonic electron cyclotron emissions are characterized by a significant magnetic field component, even in the high-frequency regime. Such a prediction may potentially be test. . .
Date: 07/2018 Publisher: Journal of Geophysical Research: Space Physics Pages: 5356 - 5363 DOI: 10.1029/2018JA025459 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1029/2018JA025459/fullpdf
More Details

Authors: Stenborg Guillermo, Stauffer Johnathan R., and Howard Russell A.
Title: Evidence for a Circumsolar Dust Ring Near Mercury’s Orbit
Abstract:

To test a technique to be used on the white-light imager onboard the recently launched Parker Solar Probe mission, we performed a numerical differentiation of the brightness profiles along the photometric axis of the F-corona models that are derived from STEREO Ahead Sun Earth Connection Heliospheric Investigation observations recorded with the HI-1 instrument between 2007 December and 2014 March. We found a consistent pattern in the derivatives that can be observed from any S/C longitude between about 18° and 23° elongation with a maximum at about 21°. These findings indicate the presence of a circumsolar dust density enhancement that peaks at about 23° elongation. A straightforward integration of the excess signal in the derivative space indicates that the brightness increase over. . .
Date: 11/2018 Publisher: The Astrophysical Journal Pages: 74 DOI: 10.3847/1538-4357/aae6cb Available at: http://stacks.iop.org/0004-637X/868/i=1/a=74?key=crossref.819ea43bc5d8ac7ce2e4d9090800ae03
More Details

Authors: Owens Mathew J., Lockwood Mike, Barnard Luke A., and MacNeil Allan R.
Title: Generation of Inverted Heliospheric Magnetic Flux by Coronal Loop Opening and Slow Solar Wind Release
Abstract:

In situ spacecraft observations provide much-needed constraints on theories of solar wind formation and release, particularly the highly variable slow solar wind, which dominates near-Earth space. Previous studies have shown an association between local inversions in the heliospheric magnetic field (HMF) and solar wind released from the vicinity of magnetically closed coronal structures. We here show that in situ properties of inverted HMF are consistent with the same hot coronal source regions as the slow solar wind. We propose that inverted HMF is produced by solar wind speed shear, which results from interchange reconnection between a coronal loop and open flux tube, and introduces a pattern of fast-slow-fast wind along a given HMF flux tube. This same loop-opening process is thought. . .
Date: 11/2018 Publisher: The Astrophysical Journal Pages: L14 DOI: 10.3847/2041-8213/aaee82 Available at: http://stacks.iop.org/2041-8205/868/i=1/a=L14?key=crossref.317335516eaf9fd091c127050a2fecdd
More Details

Authors: Graham G. A., Rae I. J., Owen C. J., and Walsh A. P.
Title: Investigating the Effect of IMF Path Length on Pitch-angle Scattering of Strahl within 1 au
Abstract:

Strahl is the strongly field-aligned, beam-like population of electrons in the solar wind. Strahl width is observed to increase with distance from the Sun, and hence strahl electrons must be subject to in-transit scattering effects. Different energy relations have been both observed and modeled for both strahl width and the width increase with radial distance. Thus, there is much debate regarding what mechanism(s) scatter strahl. In this study, we use a novel method to investigate strahl evolution within 1 au by estimating the distance traveled by the strahl along the interplanetary magnetic field (IMF). We do this by implementing methods developed in previous studies, which make use of the onset of solar energetic particles at ̃1 au. Thus, we are able to obtain average strahl broadeni. . .
Date: 03/2018 Publisher: The Astrophysical Journal Pages: 40 DOI: 10.3847/1538-4357/aaaf1b Available at: http://stacks.iop.org/0004-637X/855/i=1/a=40?key=crossref.ef4d8c88b914db7976655ab16f8f792a
More Details

Authors: Bourdin Philippe, Singh Nishant K., and Brandenburg Axel
Title: Magnetic Helicity Reversal in the Corona at Small Plasma Beta
Abstract:

Solar and stellar dynamos shed small-scale and large-scale magnetic helicity of opposite signs. However, solar wind observations and simulations have shown that some distance above the dynamo both the small-scale and large-scale magnetic helicities have reversed signs. With realistic simulations of the solar corona above an active region now being available, we have access to the magnetic field and current density along coronal loops. We show that a sign reversal in the horizontal averages of the magnetic helicity occurs when the local maximum of the plasma beta drops below unity and the field becomes nearly fully force free. Hence, this reversal is expected to occur well within the solar corona and would not directly be accessible to in situ measurements with the Parker Solar Probe or . . .
Date: 12/2018 Publisher: The Astrophysical Journal Pages: 2 DOI: 10.3847/1538-4357/aae97a Available at: http://stacks.iop.org/0004-637X/869/i=1/a=2?key=crossref.90fa7f41d90e2c8b57f8248c0437cc6b
More Details

Authors: Hu Junxiang, Li Gang, Fu Shuai, Zank Gary, and Ao Xianzhi
Title: Modeling a Single SEP Event from Multiple Vantage Points Using the iPATH Model
Abstract:

Using the recently extended 2D improved Particle Acceleration and Transport in the Heliosphere (iPATH) model, we model an example gradual solar energetic particle event as observed at multiple locations. Protons and ions that are energized via the diffusive shock acceleration mechanism are followed at a 2D coronal mass ejection-driven shock where the shock geometry varies across the shock front. The subsequent transport of energetic particles, including cross-field diffusion, is modeled by a Monte Carlo code that is based on a stochastic differential equation method. Time intensity profiles and particle spectra at multiple locations and different radial distances, separated in longitudes, are presented. The results shown here are relevant to the upcoming Parker Solar Probe mission.


Date: 02/2018 Publisher: The Astrophysical Journal Pages: L19 DOI: 10.3847/2041-8213/aaabc1 Available at: http://stacks.iop.org/2041-8205/854/i=2/a=L19?key=crossref.3db06d37bee0fc065cdec82f4faaf3b7
More Details
Authors: Banks Michael
Title: NASA launches Parker Solar Probe mission to ’touch’ the Sun
Abstract:

NASA has launched a mission to study the Sun’s atmosphere and solar wind that will come far closer to our star than any other craft before.


Date: 09/2018 Publisher: Physics World Pages: 7 - 7 DOI: 10.1088/2058-7058/31/9/11 Available at: http://stacks.iop.org/2058-7058/31/i=9/a=11?key=crossref.74cb5927650dbdc73ec7a9da93480898
More Details
Authors: Stansby David, Salem Chadi, Matteini Lorenzo, and Horbury Timothy
Title: A New Inner Heliosphere Proton Parameter Dataset from the Helios Mission
Abstract:

In the near future, Parker Solar Probe and Solar Orbiter will provide the first comprehensive in-situ measurements of the solar wind in the inner heliosphere since the Helios mission in the 1970s. We describe a reprocessing of the original Helios ion distribution functions to provide reliable and reproducible data to characterise the proton core population of the solar wind in the inner heliosphere. A systematic fitting of bi-Maxwellian distribution functions was performed to the raw Helios ion distribution function data to extract the proton core number density, velocity, and temperatures parallel and perpendicular to the magnetic field. We present radial trends of these derived proton parameters, forming a benchmark to which new measurements in the inner heliosphere will be compared. . . .
Date: 11/2018 Publisher: Solar Physics DOI: 10.1007/s11207-018-1377-3 Available at: http://link.springer.com/10.1007/s11207-018-1377-3http://link.springer.com/content/pdf/10.1007/s11207-018-1377-3.pdfhttp://link.springer.com/article/10.1007/s11207-018-1377-3/fulltext.htmlhttp://link.springer.com/content/pdf/10.1007/s11207-018-1377-3.pdf
More Details

Authors:
Title: News at a glance
Abstract:

In science news around the world, the U.S. National Institutes of Health (NIH) responds to a report on "foreign influences," Australia slashes its future research funding, Mars’s methane mystery deepens, and the Paris agreement on climate change survives a contentious rulemaking session in Poland. Also, astronomers discover the solar system’s farthest-known planet, NIH comes under fire for clinical trial reporting results, the late Paul Allen bequests a new immunology research institute, and NASA’s Parker Solar Probe makes its first dip into the sun’s atmosphere. Plus, a new study suggests tourists and scientists are making Antarctica’s birds sick, and an interview with a Harvard University historian helps explain India’s monsoon—one of Asia’s most important weather patt. . .
Date: 12/2018 Publisher: Science Pages: 1334 - 1336 DOI: 10.1126/science.362.6421.1334 Available at: http://www.sciencemag.org/lookup/doi/10.1126/science.362.6421.1334https://syndication.highwire.org/content/doi/10.1126/science.362.6421.1334
More Details

Pages