Found 188 results
Author Title Type [ Year(Asc)]
2020
Authors: Mozer F. S., Agapitov O. V., Bale S. D., Bonnell J. W., Case T., et al.
Title: Switchbacks in the Solar Magnetic Field: Their Evolution, Their Content, and Their Effects on the Plasma
Abstract:

Switchbacks (rotations of the magnetic field) are observed on the Parker Solar Probe. Their evolution, content, and plasma effects are studied in this paper. The solar wind does not receive a net acceleration from switchbacks that it encountered upstream of the observation point. The typical switchback rotation angle increased with radial distance. Significant Poynting fluxes existed inside, but not outside, switchbacks, and the dependence of the Poynting flux amplitude on the switchback radial location and rotation angle is explained quantitatively as being proportional to (B sin(θ))2. The solar wind flow inside switchbacks was faster than that outside due to the frozen-in ions moving with the magnetic structure at the Alfvén speed. This energy gain results from the diverg. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 68 DOI: 10.3847/1538-4365/ab7196 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab7196
More Details

Authors: Mozer F. S., Agapitov O. V., Bale S. D., Bonnell J. W., Goetz K., et al.
Title: Time Domain Structures and Dust in the Solar Vicinity: Parker Solar Probe Observations
Abstract:

On 2019 April 5, while the Parker Solar Probe was at its 35 solar radius perihelion, the data set collected at 293 samples/s contained more than 10,000 examples of spiky electric-field-like structures with durations less than 200 milliseconds and amplitudes greater than 10 mV m−1. The vast majority of these events were caused by plasma turbulence. Defining dust events as those with similar, narrowly peaked, positive, and single-ended signatures resulted in finding 135 clear dust events, which, after correcting for the low detection efficiently, resulted in an estimate consistent with the 1000 dust events expected from other techniques. Defining time domain structures (TDS) as those with opposite polarity signals in the opposite antennas resulted in finding 238 clear TDS eve. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 50 DOI: 10.3847/1538-4365/ab5e4b Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab5e4b
More Details

Authors: Adhikari L., Zank G. P., Zhao L.-L., Kasper J. C., Korreck K. E., et al.
Title: Turbulence Transport Modeling and First Orbit Parker Solar Probe ( PSP ) Observations
Abstract:

The Parker Solar Probe (PSP) achieved its first orbit perihelion on 2018 November 6, reaching a heliocentric distance of about 0.165 au (35.55 R). Here, we study the evolution of fully developed turbulence associated with the slow solar wind along the PSP trajectory between 35.55 R and 131.64 R in the outbound direction, comparing observations to a theoretical turbulence transport model. Several turbulent quantities, such as the fluctuating kinetic energy and the corresponding correlation length, the variance of density fluctuations, and the solar wind proton temperature are determined from the PSP Solar Wind Electrons Alphas and Protons (SWEAP) plasma data along its trajectory between 35.55 R and 131.64 R. The evolut. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 38 DOI: 10.3847/1538-4365/ab5852 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab5852
More Details

Authors: Longcope Dana
Title: Using Kepler's laws and Rutherford scattering to chart the seven gravity assists in the epic sunward journey of the Parker Solar Probe
Abstract:

On August 12, 2018, NASA launched the Parker Solar Probe (PSP) to explore regions very near the Sun. Losing enough energy and angular momentum to approach the Sun requires either an impractical amount of fuel or a maneuver called a gravity assist. A gravity assist is essentially an elastic collision with a massive, moving target—Rutherford scattering from a planet. Gravity assists are often used to gain energy in missions destined for the outer solar system, but they can also be used to lose energy. Reaching an orbit sufficiently close to the Sun requires that PSP undergoes not one but seven successive gravity assists off the planet Venus. This simple description poses several conceptual challenges to the curious physics student. Why is it so much more challenging to get to the Sun th. . .
Date: 01/2020 Publisher: American Journal of Physics Pages: 11 - 19 DOI: 10.1119/10.0000145 Available at: http://aapt.scitation.org/doi/10.1119/10.0000145http://aapt.scitation.org/doi/pdf/10.1119/10.0000145
More Details

Authors: Hess Phillip, Rouillard Alexis P., Kouloumvakos Athanasios, Liewer Paulett C., Zhang Jie, et al.
Title: WISPR Imaging of a Pristine CME
Abstract:

The Wide-field Imager for Solar Probe (WISPR) on board the Parker Solar Probe (PSP) observed a coronal mass ejection (CME) on 2018 November 1, the first day of the initial PSP encounter. The speed of the CME, approximately 200─300 km s−1 in the WISPR field of view, is typical of slow, streamer blowout CMEs. This event was also observed by the Large Angle and Spectrometric Coronagraph Experiment (LASCO) coronagraphs. WISPR and LASCO view remarkably similar structures that enable useful cross-comparison between the two data sets as well as stereoscopic imaging of the CME. An analysis is extended to lower heights by linking the white-light observations to extreme ultraviolet (EUV) data from the Atmospheric Imaging Assembly, which reveal a structure that erupts more than a fu. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 25 DOI: 10.3847/1538-4365/ab4ff0 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab4ff0
More Details

2019
Authors: Chhiber Rohit, Usmanov Arcadi V., Matthaeus William H., and Goldstein Melvyn L.
Title: Contextual Predictions for the Parker Solar Probe . I. Critical Surfaces and Regions
Abstract:

The solar corona and young solar wind may be characterized by critical surfaces—the sonic, Alfvén, and first plasma-β unity surfaces—that demarcate regions where the solar wind flow undergoes certain crucial transformations. Global numerical simulations and remote sensing observations offer a natural mode for the study of these surfaces at large scales, thus providing valuable context for the high-resolution in situ measurements expected from the recently launched Parker Solar Probe (PSP). The present study utilizes global three-dimensional magnetohydrodynamic (MHD) simulations of the solar wind to characterize the critical surfaces and investigate the flow in propinquitous regions. Effects of solar activity are incorporated by varying source magnetic dipole tilts and employing ma. . .
Date: 03/2019 Publisher: The Astrophysical Journal Supplement Series Pages: 11 DOI: 10.3847/1538-4365/ab0652 Available at: http://stacks.iop.org/0067-0049/241/i=1/a=11?key=crossref.5e73dbbb501083f4d606cdf21e74f766http://stacks.iop.org/0067-0049/241/i=1/a=11/
More Details

Authors: Adhikari L., Zank G. P., and Zhao L.-L.
Title: Does Turbulence Turn off at the Alfvén Critical Surface?
Abstract:

The Parker Solar Probe (PSP) will eventually reach and cross the Alfvén point or surface as it provides us with direct in situ measurements of the solar atmosphere. The Alfvén surface is the location at which the large-scale bulk solar wind speed ${\boldsymbol{U}}$ and the Alfvén speed ${\boldsymbol{V}}$ A are equal, and thus it separates sub-Aflvénic coronal flow $| {\boldsymbol{U}}| \ll | {{\boldsymbol{V}}}_{{\rm{A}}}| $ from super-Alfv. . .
Date: Jan-05-2019 Publisher: The Astrophysical Journal Pages: 26 DOI: 10.3847/1538-4357/ab141c Available at: https://iopscience.iop.org/article/10.3847/1538-4357/ab141c
More Details

Authors: Mann Ingrid, Nouzák Libor, Vaverka Jakub, Antonsen Tarjei, Fredriksen Åshild, et al.
Title: Dust observations with antenna measurements and its prospects for observations with Parker Solar Probe and Solar Orbiter
Abstract:

The electric and magnetic field instrument suite FIELDS on board the NASA Parker Solar Probe and the radio and plasma waves instrument RPW on the ESA Solar Orbiter mission that explore the inner heliosphere are sensitive to signals generated by dust impacts. Dust impacts have been observed using electric field antennas on spacecraft since the 1980s and the method was recently used with a number of space missions to derive dust fluxes. Here, we consider the details of dust impacts, subsequent development of the impact generated plasma and how it produces the measured signals. We describe empirical approaches to characterise the signals and compare these in a qualitative discussion of laboratory simulations to predict signal shapes for spacecraft measurements in the inner solar system. Wh. . .
Date: 12/2019 Publisher: Annales Geophysicae Pages: 1121 - 1140 DOI: 10.5194/angeo-37-1121-2019 Available at: https://www.ann-geophys.net/37/1121/2019/https://www.ann-geophys.net/37/1121/2019/angeo-37-1121-2019.pdf
More Details

Authors: Wilson Lynn B., Chen Li-Jen, Wang Shan, Schwartz Steven J., Turner Drew L., et al.
Title: Electron Energy Partition across Interplanetary Shocks. II. Statistics
Abstract:

A statistical analysis of 15,210 electron velocity distribution function (VDF) fits, observed within ±2 hr of 52 interplanetary (IP) shocks by the Wind spacecraft near 1 au, is presented. This is the second in a three-part series on electron VDFs near IP shocks. The electron velocity moment statistics for the dense, low-energy core, tenuous, hot halo, and field-aligned beam/strahl are a statistically significant list of values illustrated with both histograms and tabular lists for reference and baselines in future work. Given the large statistics in this investigation, the beam/strahl fit results in the upstream are now the most comprehensive attempt to parameterize the beam/strahl electron velocity moments in the ambient solar wind. The median density, temperature, beta, and temperatu. . .
Date: 12/2019 Publisher: The Astrophysical Journal Supplement Series Pages: 24 DOI: 10.3847/1538-4365/ab5445 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab5445
More Details

Authors: Al-Haddad Nada, Lugaz Noé, Poedts Stefaan, Farrugia Charles J., Nieves-Chinchilla Teresa, et al.
Title: Evolution of Coronal Mass Ejection Properties in the Inner Heliosphere: Prediction for the Solar Orbiter and Parker Solar Probe
Abstract:

The evolution of the magnetic field and plasma quantities inside a coronal mass ejection (CME) with distance are known from statistical studies using data from 1 au monitors, planetary missions, Helios, and Ulysses. This does not cover the innermost heliosphere, below 0.29 au, where no data are yet publicly available. Here, we describe the evolution of the properties of simulated CMEs in the inner heliosphere using two different initiation mechanisms. We compare the radial evolution of these properties with that found from statistical studies based on observations in the inner heliosphere by Helios and MESSENGER. We find that the evolution of the radial size and magnetic field strength is nearly indistinguishable for twisted flux rope from that of writhed CMEs. The evolution of these pr. . .
Date: 10/2019 Publisher: The Astrophysical Journal Pages: 179 DOI: 10.3847/1538-4357/ab4126 Available at: https://iopscience.iop.org/article/10.3847/1538-4357/ab4126
More Details

Authors: Telloni Daniele, Giordano Silvio, and Antonucci Ester
Title: On the Fast Solar Wind Heating and Acceleration Processes: A Statistical Study Based on the UVCS Survey Data
Abstract:

The UltraViolet Coronagraph Spectrometer (UVCS) on board the SOlar and Heliospheric Observatory has almost continuously observed, throughout the whole solar cycle 23, the UV solar corona. This work addresses the first-ever statistical analysis of the daily UVCS observations, performed in the O VI channel, of the northern polar coronal hole, between 1.5 and 3 R , during the period of low solar activity from 1996 April to 1997 December. The study is based on the investigation, at different heights, of the correlation between the variance of the O VI 1031.92 Å spectral line and the O VI 1031.92, 1037.61 Å doublet intensity ratio, which are proxies of the kinetic temperature of the O5+ ions and of the speed of the oxygen component of the fast solar wind, respectiv. . .
Date: 08/2019 Publisher: The Astrophysical Journal Pages: L36 DOI: 10.3847/2041-8213/ab3731 Available at: https://iopscience.iop.org/article/10.3847/2041-8213/ab3731
More Details

Authors: Wu Honghong, Verscharen Daniel, Wicks Robert T., Chen Christopher H. K., He Jiansen, et al.
Title: The Fluid-like and Kinetic Behavior of Kinetic Alfvén Turbulence in Space Plasma
Abstract:

Kinetic Alfvén waves (KAWs) are the short-wavelength extension of the magnetohydrodynamics Alfvén-wave branch in the case of highly oblique propagation with respect to the background magnetic field. Observations of space plasma show that small-scale turbulence is mainly KAW-like. We apply two theoretical approaches, a collisional two-fluid theory and a collisionless linear kinetic theory, to obtain predictions for the KAW polarizations depending on β p (the ratio of the proton thermal pressure to the magnetic pressure) at the ion gyroscale in terms of fluctuations in density, bulk velocity, and pressure. We perform a wavelet analysis of Magnetospheric Multiscale magnetosheath measurements and compare the observations with both the. . .
Date: 01/2019 Publisher: The Astrophysical Journal Pages: 106 DOI: 10.3847/1538-4357/aaef77 Available at: http://stacks.iop.org/0004-637X/870/i=2/a=106?key=crossref.82a2db48f1fad21f326ef5e3fb4b795
More Details

Authors: Pacheco D., Agueda N., Aran A., Heber B., and Lario D.
Title: Full inversion of solar relativistic electron events measured by the Helios spacecraft
Abstract:

Context. The Parker Solar Probe and the incoming Solar Orbiter mission will provide measurements of solar energetic particle (SEP) events at close heliocentric distances from the Sun. Up to present, the largest data set of SEP events in the inner heliosphere are the observations by the two Helios spacecraft.

Aims. We re-visit a sample of 15 solar relativistic electron events measured by the Helios mission with the goal of better characterising the injection histories of solar energetic particles and their interplanetary transport conditions at heliocentric distances <1 AU.

Methods. The measurements provided by the E6 instrument on board Helios provide us with the electron directional distributions in eight different sectors that we use t. . .
Date: 01/2019 Publisher: Astronomy & Astrophysics Pages: A3 DOI: 10.1051/0004-6361/201834520 Available at: https://www.aanda.org/10.1051/0004-6361/201834520/pdf
More Details

Authors: Bale S. D., Badman S. T., Bonnell J. W., Bowen T. A., Burgess D., et al.
Title: Highly structured slow solar wind emerging from an equatorial coronal hole
Abstract:

During the solar minimum, when the Sun is at its least active, the solar wind is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfvénic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain; theories and observations suggest that they may originate at the tips of helmet streamers, from interchange reconnection near coronal hole boundaries, or within coronal holes with highly diverging magnetic fields. The heating mechanism required to drive the solar wind is also unresolved, although candidate mechanisms include Alfvé;n-wave tur. . .
Date: 12/2019 Publisher: Nature Pages: 237 - 242 DOI: 10.1038/s41586-019-1818-7 Available at: http://www.nature.com/articles/s41586-019-1818-7
More Details

Authors: Scudder J. D.
Title: The Long-standing Closure Crisis in Coronal Plasmas
Abstract:

Coronal and solar wind physics have long used plasma fluid models to motivate physical explanations of observations; the hypothesized model is introduced into a fluid simulation to see if observations are reproduced. This procedure is called Verification of Mechanism (VoM) modeling; it is contingent on the self consistency of the closure that made the simulation possible. Inner corona VoMs typically assume weak gradient Spitzer─Braginskii closures. Four prominent coronal VoMs in place for decades are shown to contradict their closure hypotheses, demonstrably shaping coronal and solar wind research. These findings have been possible since 1953. This unchallenged evolution is worth understanding, so that similarly flawed VoMs do not continue to mislead new research. As a first step in t. . .
Date: 11/2019 Publisher: The Astrophysical Journal Pages: 148 DOI: 10.3847/1538-4357/ab48e0 Available at: https://iopscience.iop.org/article/10.3847/1538-4357/ab48e0
More Details

Authors: Chang Qing, Xu Xiaojun, Xu Qi, Zhong Jun, Xu Jiaying, et al.
Title: Multiple-point Modeling the Parker Spiral Configuration of the Solar Wind Magnetic Field at the Solar Maximum of Solar Cycle 24
Abstract:

By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r = R 0 (neglecting solar gravitation and acceleration by high coronal temperature), the large-scale solar wind magnetic field lines are distorted into a Parker spiral configuration, which is usually simplified to an Archimedes spiral. Using magnetic field observations near Mercury, Venus, and Earth during solar maximum of Solar Cycle 24, we statistically surveyed the Parker spiral angles and obtained the empirical equations of the Archimedes and Parker spirals by fitting the multiple-point results. We found that the solar wind magnetic field configurations are slightly different during different years. Archimedes and Parker spiral configuration. . .
Date: 10/2019 Publisher: The Astrophysical Journal Pages: 102 DOI: 10.3847/1538-4357/ab412a Available at: https://iopscience.iop.org/article/10.3847/1538-4357/ab412
More Details

Authors: Howard R. A., Vourlidas A., Bothmer V., Colaninno R. C., DeForest C. E., et al.
Title: Near-Sun observations of an F-corona decrease and K-corona fine structure
Abstract:

Remote observations of the solar photospheric light scattered by electrons (the K-corona) and dust (the F-corona or zodiacal light) have been made from the ground during eclipses and from space at distances as small as 0.3 astronomical units to the Sun. Previous observations of dust scattering have not confirmed the existence of the theoretically predicted dust-free zone near the Sun. The transient nature of the corona has been well characterized for large events, but questions still remain (for example, about the initiation of the corona and the production of solar energetic particles) and for small events even its structure is uncertain. Here we report imaging of the solar corona during the first two perihelion passes (0.16-0.25 astronomical units) of the Parker Solar Probe spacecraft. . .
Date: 12/2019 Publisher: Nature Pages: 232 - 236 DOI: 10.1038/s41586-019-1807-x Available at: http://www.nature.com/articles/s41586-019-1807-x
More Details

Authors: Riley Pete, Downs Cooper, Linker Jon A., Mikic Zoran, Lionello Roberto, et al.
Title: Predicting the Structure of the Solar Corona and Inner Heliosphere during Parker Solar Probe 's First Perihelion Pass
Abstract:

NASA’s Parker Solar Probe (PSP) spacecraft reached its first perihelion of 35.7 solar radii on 2018 November 5. To aid in mission planning, and in anticipation of the unprecedented measurements to be returned, in late October, we developed a three-dimensional magnetohydrodynamic (MHD) solution for the solar corona and inner heliosphere, driven by the then available observations of the Sun’s photospheric magnetic field. Our model incorporates a wave-turbulence-driven model to heat the corona. Here, we present our predictions for the structure of the solar corona and the likely in situ measurements that PSP will be returning over the next few months. We infer that, in the days prior to first encounter, PSP was immersed in wind emanating from a well-established, positive-polarity north. . .
Date: 04/2019 Publisher: The Astrophysical Journal Pages: L15 DOI: 10.3847/2041-8213/ab0ec3 Available at: http://stacks.iop.org/2041-8205/874/i=2/a=L15?key=crossref.94a3f13ef95cab063c2cc60115d0f410http://stacks.iop.org/2041-8205/874/i=2/a=L15/pd
More Details

Authors: McComas D. J., Christian E. R., Cohen C. M. S., Cummings A. C., Davis A. J., et al.
Title: Probing the energetic particle environment near the Sun
Abstract:

NASA's Parker Solar Probe mission recently plunged through the inner heliosphere of the Sun to its perihelia, about 24 million kilometres from the Sun. Previous studies farther from the Sun (performed mostly at a distance of 1 astronomical unit) indicate that solar energetic particles are accelerated from a few kiloelectronvolts up to near-relativistic energies via at least two processes: "impulsive" events, which are usually associated with magnetic reconnection in solar flares and are typically enriched in electrons, helium-3 and heavier ions, and "gradual" events, which are typically associated with large coronal-mass-ejection-driven shocks and compressions moving through the corona and inner solar wind and are the dominant source of protons with energies between 1 and 10 megaelectro. . .
Date: 12/2019 Publisher: Nature Pages: 223 - 227 DOI: 10.1038/s41586-019-1811-1 Available at: http://www.nature.com/articles/s41586-019-1811-1
More Details

Authors: Hein Andreas M., Perakis Nikolaos, Eubanks Marshall, Hibberd Adam, Crowl Adam, et al.
Title: Project Lyra: Sending a spacecraft to 1I/’Oumuamua (former A/2017 U1), the interstellar asteroid
Abstract:

The first definitely interstellar object 1I/'Oumuamua (previously A/2017 U1) observed in our solar system provides the opportunity to directly study material from an other star system. Can such objects be intercepted? The challenge of reaching the object within a reasonable timeframe is formidable due to its high heliocentric hyperbolic excess velocity of about 26 km/s; much faster than any vehicle yet launched. This paper presents a high-level analysis of potential near-term options for a mission to 1I/'Oumuamua and potential similar objects. Reaching 1I/'Oumuamua via a spacecraft launched in a reasonable timeframe of 5-10 years (launch in 2022-2027) requires an Earth departure hyperbolic excess velocity between 33 and 76 km/s for mission durations between 30 and 5 years, respectively.. . .
Date: 08/2019 Publisher: Acta Astronautica Pages: 552 - 561 DOI: 10.1016/j.actaastro.2018.12.042 Available at: https://linkinghub.elsevier.com/retrieve/pii/S0094576518317004
More Details

Authors: Yoon Peter H., Hwang Junga, Kim Hyangpyo, and Seough Jungjoon
Title: Quasi Thermal Noise Spectroscopy for Van Allen Probes
Abstract:

Quasi thermal fluctuations in the Langmuir/upper-hybrid frequency range are pervasively observed in space plasmas including the radiation belt and the ring current region of inner magnetosphere as well as the solar wind. The quasi thermal noise spectroscopy may be employed in order to determine the electron density and temperature as well as to diagnose the properties of energetic electrons when direct measurements are not available. However, when employing the technique, one must carefully take the spacecraft orientation into account. The present paper takes the upper-hybrid and multiple harmonic—or (n + 1/2)fce—emissions measured by the Van Allen Probes as an example in order to illustrate how the spacecraft antenna geometrical factor can be incorporated into the theore. . .
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026460 Available at: https://onlinelibrary.wiley.com/doi/abs/10.1029/2019JA026460
More Details

Authors: Ratmaya Widya, Soudant Dominique, Salmon-Monviola Jordy, Plus Martin, Cochennec-Laureau Nathalie, et al.
Title: Reduced phosphorus loads from the Loire and Vilaine rivers were accompanied by increasing eutrophication in the Vilaine Bay (south Brittany, France)
Abstract:

The evolution of eutrophication parameters (i.e., nutrients and phytoplankton biomass) during recent decades was examined in coastal waters of the Vilaine Bay (VB, France) in relation to changes in the Loire and Vilaine rivers. Dynamic linear models were used to study long-term trends and seasonality of dissolved inorganic nutrient and chlorophyll a concentrations (Chl a) in rivers and coastal waters. For the period 1997-2013, the reduction in dissolved riverine inorganic phosphorus (DIP) concentrations led to the decrease in their Chl a levels. However, while dissolved inorganic nitrogen (DIN) concentrations decreased only slightly in the Vilaine, they increased in the Loire, specifically in summer. Simultaneously, phytoplankton in the VB underwent profound changes with increase in bio. . .
Date: 04/2019 Publisher: Biogeosciences Pages: 1361 - 1380 DOI: 10.5194/bg-16-1361-201910.5194/bg-16-1361-2019-supplement Available at: https://www.biogeosciences.net/16/1361/2019/https://www.biogeosciences.net/16/1361/2019/bg-16-1361-2019.pdfhttps://www.biogeosciences.net/16/1361/2019/bg-16-1361-2019-supplement.pdf
More Details

Authors: Le Fur I, De Wit R, Plus M, Oheix J, Derolez V, et al.
Title: Re-oligotrophication trajectories of macrophyte assemblages in Mediterranean coastal lagoons based on 17-year time-series
Abstract:

No abstract


Date: 01/2019 Publisher: Marine Ecology Progress Series Pages: 13 - 32 DOI: 10.3354/meps12814 Available at: https://www.int-res.com/abstracts/meps/v608/p13-32/https://www.int-res.com/articles/meps_oa/m608p013.pdf
More Details
Authors: Parashar T. N., Cuesta M., and Matthaeus W. H.
Title: Reynolds Number and Intermittency in the Expanding Solar Wind: Predictions Based on Voyager Observations
Abstract:

The large-scale features of the solar wind are examined in order to predict small-scale features of turbulence in unexplored regions of the heliosphere. The strategy is to examine how system size, or effective Reynolds number Re, varies, and then how this quantity influences observable statistical properties, including intermittency properties of solar wind turbulence. The expectation based on similar hydrodynamics scalings is that the kurtosis, of the small-scale magnetic field increments, will increase with increasing Re. Simple theoretical arguments as well as Voyager observations indicate that effective interplanetary turbulence Re decreases with increasing heliocentric distance. The decrease of scale-dependent magnetic increment kurtosis with increasing heliocentric distance is ver. . .
Date: 10/2019 Publisher: The Astrophysical Journal Pages: L57 DOI: 10.3847/2041-8213/ab4a82 Available at: https://iopscience.iop.org/article/10.3847/2041-8213/ab4a82
More Details

Authors: Verscharen Daniel, Chandran Benjamin D. G., Jeong Seong-Yeop, Salem Chadi S., Pulupa Marc P., et al.
Title: Self-induced Scattering of Strahl Electrons in the Solar Wind
Abstract:

We investigate the scattering of strahl electrons by microinstabilities as a mechanism for creating the electron halo in the solar wind. We develop a mathematical framework for the description of electron-driven microinstabilities and discuss the associated physical mechanisms. We find that an instability of the oblique fast-magnetosonic/whistler (FM/W) mode is the best candidate for a microinstability that scatters strahl electrons into the halo. We derive approximate analytic expressions for the FM/W instability threshold in two different β c regimes, where β c is the ratio of the core electrons’ thermal pressure to the magnetic pressure, and confirm the accuracy of these thresholds through comparison with numerical solutions to the hot-plasma dispersion rela. . .
Date: 12/2019 Publisher: The Astrophysical Journal Pages: 136 DOI: 10.3847/1538-4357/ab4c30 Available at: https://iopscience.iop.org/article/10.3847/1538-4357/ab4c30https://iopscience.iop.org/article/10.3847/1538-4357/ab4c30/
More Details

Pages