Found 115 results
Author Title Type [ Year(Asc)]
Filters: Keyword is Solar Probe Plus  [Clear All Filters]
2018
Authors: Winslow Reka M., Schwadron Nathan A., Lugaz é, Guo Jingnan, Joyce Colin J., et al.
Title: Opening a Window on ICME-driven GCR Modulation in the Inner Solar System
Abstract:

Interplanetary coronal mass ejections (ICMEs) often cause Forbush decreases (Fds) in the flux of galactic cosmic rays (GCRs). We investigate how a single ICME, launched from the Sun on 2014 February 12, affected GCR fluxes at Mercury, Earth, and Mars. We use GCR observations from MESSENGER at Mercury, ACE/LRO at the Earth/Moon, and MSL at Mars. We find that Fds are steeper and deeper closer to the Sun, and that the magnitude of the magnetic field in the ICME magnetic ejecta as well as the “strength” of the ICME sheath both play a large role in modulating the depth of the Fd. Based on our results, we hypothesize that (1) the Fd size decreases exponentially with heliocentric distance, and (2) that two-step Fds are more common closer to the Sun. Both hypotheses will be directly verifia. . .
Date: 04/2018 Publisher: The Astrophysical Journal Pages: 139 DOI: 10.3847/1538-4357/aab098 Available at: http://stacks.iop.org/0004-637X/856/i=2/a=139?key=crossref.287f3cbc519cdfae455bd8b9d0a9351a
More Details

Authors: éville Victor, Tenerani Anna, and Velli Marco
Title: Parametric Decay and the Origin of the Low-frequency Alfvénic Spectrum of the Solar Wind
Abstract:

The fast solar wind shows a wide spectrum of transverse magnetic and velocity field perturbations. These perturbations are strongly correlated in the sense of Alfvén waves propagating mostly outward, from the Sun to the interplanetary medium. They are likely to be fundamental to the acceleration and the heating of the solar wind. However, the precise origin of the broadband spectrum is unknown to date. Typical periods of chromospheric Alfvén waves are limited to a few minutes, and any longer period perturbations should be strongly reflected at the transition region. In this work, we show that minute long Alfvénic fluctuations are unstable to the parametric instability. Parametric instability enables an inverse energy cascade by exciting several-hour-long periods of Alfvénic fluctuat. . .
Date: 10/2018 Publisher: The Astrophysical Journal Pages: 38 DOI: 10.3847/1538-4357/aadb8f Available at: http://stacks.iop.org/0004-637X/866/i=1/a=38?key=crossref.877507b60fca8d8ddb73692a546936b0
More Details

Authors: Chandran Benjamin D. G.
Title: Parametric instability, inverse cascade and the  range of solar-wind turbulence
Abstract:

In this paper, weak-turbulence theory is used to investigate the nonlinear evolution of the parametric instability in three-dimensional low-β plasmas at wavelengths much greater than the ion inertial length under the assumption that slow magnetosonic waves are strongly damped. It is shown analytically that the parametric instability leads to an inverse cascade of Alfvén wave quanta, and several exact solutions to the wave kinetic equations are presented. The main results of the paper concern the parametric decay of Alfvén waves that initially satisfy e+ ≫ e-, where e+ and e- are the frequency (f) spectra of Alfvén waves propagating in opposite directions along the magnetic field lines. If e+ initially has a peak frequency fDate: 02/2018 Publisher: Journal of Plasma Physics DOI: 10.1017/S0022377818000016 Available at: https://www.cambridge.org/core/product/identifier/S0022377818000016/type/journal_article
More Details

Authors: Milligan Ryan O., and Ireland Jack
Title: On the Performance of Multi-Instrument Solar Flare Observations During Solar Cycle 24
Abstract:

The current fleet of space-based solar observatories offers us a wealth of opportunities to study solar flares over a range of wavelengths. Significant advances in our understanding of flare physics often come from coordinated observations between multiple instruments. Consequently, considerable efforts have been, and continue to be, made to coordinate observations among instruments ( e.g. through the Max Millennium Program of Solar Flare Research). However, there has been no study to date that quantifies how many flares have been observed by combinations of various instruments. Here we describe a technique that retrospectively searches archival databases for flares jointly observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), Solar Dynamics Observatory (SDO)/ EUV Vari. . .
Date: 02/2018 Publisher: Solar Physics DOI: 10.1007/s11207-017-1233-x Available at: http://link.springer.com/10.1007/s11207-017-1233-xhttp://link.springer.com/content/pdf/10.1007/s11207-017-1233-x.pdfhttp://link.springer.com/article/10.1007/s11207-017-1233-x/fulltext.htmlhttp://link.springer.com/content/pdf/10.1007/s11207-017-1233-x.pdf
More Details

Authors: Xiong Ming, Davies Jackie A., Feng Xueshang, Li Bo, Yang Liping, et al.
Title: Prospective White-light Imaging and In Situ Measurements of Quiescent Large-scale Solar-wind Streams from the Parker Solar Probe and Solar Orbiter
Abstract:

Deep-space exploration of the inner heliosphere is in an unprecedented golden age, with the recent and forthcoming launches of the Parker Solar Probe (PSP) and Solar Orbiter (SolO) missions, respectively. In order to both predict and understand the prospective observations by PSP and SolO, we perform forward MHD modeling of the 3D inner heliosphere at solar minimum, and synthesize the white-light (WL) emission that would result from Thomson scattering of sunlight from the coronal and heliospheric plasmas. Both solar rotation and spacecraft trajectory should be considered when reconstructing quiescent large-scale solar-wind streams from PSP and SolO WL observations. When transformed from a static coordinate system into a corotating one, the elliptical orbit of PSP becomes a multiwinding . . .
Date: 12/2018 Publisher: The Astrophysical Journal Pages: 137 DOI: 10.3847/1538-4357/aae978 Available at: http://stacks.iop.org/0004-637X/868/i=2/a=137?key=crossref.fe473eb9a278d1ea105f9203808e2eab
More Details

Authors: Perrone Denise, Stansby D, Horbury T S, and Matteini L
Title: Radial evolution of the solar wind in pure high-speed streams: HELIOS revised observations
Abstract:

Spacecraft observations have shown that the proton temperature in the solar wind falls off with radial distance more slowly than expected for an adiabatic prediction. Usually, previous studies have been focused on the evolution of the solar-wind plasma by using the bulk speed as an order parameter to discriminate different regimes. In contrast, here, we study the radial evolution of pure and homogeneous fast streams (i.e. well-defined streams of coronal-hole plasma that maintain their identity during several solar rotations) by means of re-processed particle data, from the HELIOS satellites between 0.3 and 1 au. We have identified 16 intervals of unperturbed high-speed coronal-hole plasma, from three different sources and measured at different radial distances. The observations show tha. . .
Date: 03/2019 Publisher: Monthly Notices of the Royal Astronomical Society Pages: 3730 - 3737 DOI: 10.1093/mnras/sty3348 Available at: https://academic.oup.com/mnras/article/483/3/3730/5237719http://academic.oup.com/mnras/article-pdf/483/3/3730/27299782/sty3348.pdf
More Details

Authors: Tsurutani Bruce T., Lakhina Gurbax S., Sen Abhijit, Hellinger Petr, Glassmeier Karl-Heinz, et al.
Title: A Review of Alfvénic Turbulence in High-Speed Solar Wind Streams: Hints From Cometary Plasma Turbulence
Abstract:

Solar wind turbulence within high-speed streams is reviewed from the point of view of embedded single nonlinear Alfvén wave cycles, discontinuities, magnetic decreases (MDs), and shocks. For comparison and guidance, cometary plasma turbulence is also briefly reviewed. It is demonstrated that cometary nonlinear magnetosonic waves phase-steepen, with a right-hand circular polarized foreshortened front and an elongated, compressive trailing edge. The former part is a form of "wave breaking" and the latter that of "period doubling." Interplanetary nonlinear Alfvén waves, which are arc polarized, have a 180° foreshortened front and with an elongated trailing edge. Alfvén waves have polarizations different from those of cometary magnetosonic waves, indicating that helicity is a durable fe. . .
Date: Jan-04-2018 Publisher: Journal of Geophysical Research: Space Physics Pages: 2458 - 2492 DOI: 10.1002/jgra.v123.410.1002/2017JA024203 Available at: https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2017JA024203
More Details

Authors: Horbury T S, Matteini L, and Stansby D
Title: Short, large-amplitude speed enhancements in the near-Sunfast solar wind
Abstract:

We report the presence of intermittent, short discrete enhancements in plasma speed in the near-Sun high-speed solar wind. Lasting tens of seconds to minutes in spacecraft measurements at 0.3 au, speeds inside these enhancements can reach 1000 km s-1, corresponding to a kinetic energy up to twice that of the bulk high-speed solar wind. These events, which occur around 5 per cent of the time, are Alfvénic in nature with large magnetic field deflections and are the same temperature as the surrounding plasma, in contrast to the bulk fast wind which has a well-established positive speed-temperature correlation. The origin of these speed enhancements is unclear but they may be signatures of discrete jets associated with transient events in the chromosphere or corona. Such large s. . .
Date: 08/2018 Publisher: Monthly Notices of the Royal Astronomical Society Pages: 1980 - 1986 DOI: 10.1093/mnras/sty953 Available at: https://academic.oup.com/mnras/article/478/2/1980/4987231
More Details

Authors: Roberts Merrill A, Uritsky Vadim M, DeVore Richard, and Karpen Judith T
Title: Simulated Encounters of the Parker Solar Probe with a Coronal-hole Jet
Abstract:

Solar coronal jets are small, transient, collimated ejections most easily observed in coronal holes (CHs). The upcoming Parker Solar Probe (PSP) mission provides the first opportunity to encounter CH jets in situ near the Sun and examine their internal structure and dynamics. Using projected mission orbital parameters, we have simulated PSP encounters with a fully three-dimensional magnetohydrodynamic (MHD) model of a CH jet. We find that three internal jet regions, featuring different wave modes and levels of compressibility, have distinct identifying signatures detectable by PSP. The leading Alfvén wave front and its immediate wake are characterized by trans-Alfvénic plasma flows with mild density enhancements. This front exhibits characteristics of a fast switch-on MHD shock, whose. . .
Date: 10/2018 Publisher: The Astrophysical Journal Pages: 14 DOI: 10.3847/1538-4357/aadb41 Available at: http://stacks.iop.org/0004-637X/866/i=1/a=14?key=crossref.839142d08cc9d207f0bd8fb8e2b59c4a
More Details

Authors: Amicis Raffaella ’, Matteini Lorenzo, and Bruno Roberto
Title: On slow solar wind with high Alfvénicity: from composition and microphysics to spectral properties
Abstract:

Alfvénic fluctuations are very common features in the solar wind and are found especially within the main portion of fast-wind streams while the slow wind usually is less Alfvénic and more variable. In general, the fast and slow winds show many differences, which span from the large-scale structure to small-scale phenomena, including also a different turbulent behaviour. Recent studies, however, have shown that even the slow wind can sometimes be highly Alfvénic, with fluctuations as large as those of the fast wind. This study is devoted to presenting many facets of this Alfvénic slow solar wind, including for example the study of the source regions and their connection to coronal structures, large-scale properties, and microscale phenomena and also impact on the spectral features. . . .
Date: 3/2019 Publisher: Monthly Notices of the Royal Astronomical Society DOI: 10.1093/mnras/sty3329 Available at: https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/sty3329/5245187http://academic.oup.com/mnras/advance-article-pdf/doi/10.1093/mnras/sty3329/27125375/sty3329.pdf
More Details

Authors: Raza Nayyer, Van Waerbeke Ludovic, and Zhitnitsky Ariel
Title: Solar corona heating by axion quark nugget dark matter
Abstract:

In this work we advocate for the idea that two seemingly unrelated 80-year-old mysteries—the nature of dark matter and the high temperature of the million degree solar corona—may have resolutions that lie within the same physical framework. The current paradigm is that the corona is heated by nanoflares, which were originally proposed as miniature versions of the observed solar flares. It was recently suggested that the nanoflares could be identified as annihilation events of the nuggets from the axion quark nugget (AQN) dark matter model. This model was invented as an explanation of the observed ratio Ωdark̃Ωvisible, based only on cosmological and particle physics considerations. In this new paradigm, the AQN particles moving through the coronal plasma and . . .
Date: 11/2018 Publisher: Physical Review D DOI: 10.1103/PhysRevD.98.103527 Available at: http://harvest.aps.org/v2/journals/articles/10.1103/PhysRevD.98.103527/fulltext
More Details

Authors: Venzmer M. S., and Bothmer V.
Title: Solar-wind predictions for the Parker Solar Probeorbit
Abstract:

Context. The Parker Solar Probe (PSP; formerly Solar Probe Plus) mission will be humanitys first in situ exploration of the solar corona with closest perihelia at 9.86 solar radii (R) distance to the Sun. It will help answer hitherto unresolved questions on the heating of the solar corona and the source and acceleration of the solar wind and solar energetic particles. The scope of this study is to model the solar-wind environment for PSPs unprecedented distances in its prime mission phase during the years 2018 to 2025. The study is performed within the Coronagraphic German And US SolarProbePlus Survey (CGAUSS) which is the German contribution to the PSP mission as part of the Wide-field Imager for Solar PRobe. Aim. We present an empirical solar-wind model for the inner hel. . .
Date: 03/2018 Publisher: Astronomy & Astrophysics Pages: A36 DOI: 10.1051/0004-6361/201731831 Available at: https://www.aanda.org/10.1051/0004-6361/201731831https://www.aanda.org/10.1051/0004-6361/201731831/pdf
More Details

Authors: Reid Hamish A. S., and Kontar Eduard P.
Title: Spatial Expansion and Speeds of Type III Electron Beam Sources in the Solar Corona
Abstract:

A component of space weather, electron beams are routinely accelerated in the solar atmosphere and propagate through interplanetary space. Electron beams interact with Langmuir waves resulting in type III radio bursts. They expand along the trajectory and, using kinetic simulations, we explore the expansion as the electrons propagate away from the Sun. Specifically, we investigate the front, peak, and back of the electron beam in space from derived radio brightness temperatures of fundamental type III emission. The front of the electron beam travels at speeds from 0.2c to 0.7c, significantly faster than the back of the beam, which travels at speeds between 0.12c and 0.35c. The difference in speed between the front and the back elongates the electron beam in time. The rate of beam elonga. . .
Date: 11/2018 Publisher: The Astrophysical Journal Pages: 158 DOI: 10.3847/1538-4357/aae5d4 Available at: http://stacks.iop.org/0004-637X/867/i=2/a=158?key=crossref.0069d201e36ac912893a93028da80455
More Details

Authors: Jeffrey Natasha L. S., Hahn Michael, Savin Daniel W., and Fletcher Lyndsay
Title: Spectroscopic Measurements of the Ion Velocity Distribution at the Base of the Fast Solar Wind
Abstract:

In situ measurements of the fast solar wind reveal non-thermal distributions of electrons, protons, and minor ions extending from 0.3 au to the heliopause. The physical mechanisms responsible for these non-thermal properties and the location where these properties originate remain open questions. Here, we present spectroscopic evidence, from extreme ultraviolet spectroscopy, that the velocity distribution functions (VDFs) of minor ions are already non-Gaussian at the base of the fast solar wind in a coronal hole, at altitudes of <1.1 R . Analysis of Fe, Si, and Mg spectral lines reveals a peaked line-shape core and broad wings that can be characterized by a kappa VDF. A kappa distribution fit gives very small kappa indices off-limb of κ ≈ 1.9-2.5, indicating either (. . .
Date: 03/2018 Publisher: The Astrophysical Journal Pages: L13 DOI: 10.3847/2041-8213/aab08c Available at: http://stacks.iop.org/2041-8205/855/i=1/a=L13?key=crossref.c49731858480faecf31502cc56e0b5f3
More Details

2017
Authors: Kong Xiangliang, Guo Fan, Giacalone Joe, Li Hui, and Chen Yao
Title: The Acceleration of High-energy Protons at Coronal Shocks: The Effect of Large-scale Streamer-like Magnetic Field Structures
Abstract:

Recent observations have shown that coronal shocks driven by coronal mass ejections can develop and accelerate particles within several solar radii in large solar energetic particle (SEP) events. Motivated by this, we present an SEP acceleration study that including the process in which a fast shock propagates through a streamer-like magnetic field with both closed and open field lines in the low corona region. The acceleration of protons is modeled by numerically solving the Parker transport equation with spatial diffusion both along and across the magnetic field. We show that particles can be sufficiently accelerated to up to several hundred MeV within 2-3 solar radii. When the shock propagates through a streamer-like magnetic field, particles are more efficiently accelerated compared. . .
Date: 12/2017 Publisher: The Astrophysical Journal Pages: 38 DOI: 10.3847/1538-4357/aa97d7 Available at: http://stacks.iop.org/0004-637X/851/i=1/a=38?key=crossref.2009ec10fbd1f6f8cd1462070076984f
More Details

Authors: Howes Gregory G., Klein Kristopher G., and Li Tak Chu
Title: Diagnosing collisionless energy transfer using field–particle correlations: Vlasov–Poisson plasmas
Abstract:

Turbulence plays a key role in the conversion of the energy of large-scale fields and flows to plasma heat, impacting the macroscopic evolution of the heliosphere and other astrophysical plasma systems. Although we have long been able to make direct spacecraft measurements of all aspects of the electromagnetic field and plasma fluctuations in near-Earth space, our understanding of the physical mechanisms responsible for the damping of the turbulent fluctuations in heliospheric plasmas remains incomplete. Here we propose an innovative field-particle correlation technique that can be used to measure directly the secular energy transfer from fields to particles associated with collisionless damping of the turbulent fluctuations. Furthermore, this novel procedure yields information about th. . .
Date: 02/2017 Publisher: Journal of Plasma Physics DOI: 10.1017/S0022377816001197 Available at: https://www.cambridge.org/core/product/identifier/S0022377816001197/type/journal_articlehttps://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022377816001197
More Details

Authors: Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, and Vasylenko A.A.
Title: Future space missions: the inner region of the Solar system
Abstract:

The paper deals with an overview of space missions to explore the inner region of the Solar System, the nearest on time of their launch, namely, Probe Plus, Solar Orbiter, BepiColombo, EXOMars, and InSight. Each of them will study either the Sun or the planet of the Earth group. Their launches are planned for 2018-2020. We describe briefly predestination and technical equipment of spacecrafts, flight plan and scientific goal of these missions.


Date: 10/2017 Publisher: Kosmìčna nauka ì tehnologìâ Pages: 73 - 80 DOI: 10.15407/knit10.15407/knit2017.0310.15407/knit2017.03.073 Available at: http://space-scitechjournal.org.ua/enhttp://space-scitechjournal.org.ua/en/archive/2017/3http://space-scitechjournal.org.ua/en/archive/2017/3/07
More Details
Authors: Stenborg Guillermo, and Howard Russell A.
Title: A Heuristic Approach to Remove the Background Intensity on White-light Solar Images. I. STEREO /HI-1 Heliospheric Images
Abstract:

White-light coronal and heliospheric imagers observe scattering of photospheric light from both dust particles (the F-Corona) and free electrons in the corona (the K-corona). The separation of the two coronae is thus vitally important to reveal the faint K-coronal structures (e.g., streamers, co-rotating interaction regions, coronal mass ejections, etc.). However, the separation of the two coronae is very difficult, so we are content in defining a background corona that contains the F- and as little K- as possible. For both the LASCO-C2 and LASCO-C3 coronagraphs aboard the Solar and Heliospheric Observatory (SOHO) and the white-light imagers of the SECCHI suite aboard the Solar Terrestrial Relationships Observatory (STEREO), a time-dependent model of the background corona is generated f. . .
Date: 04/2017 Publisher: The Astrophysical Journal Pages: 68 DOI: 10.3847/1538-4357/aa6a12 Available at: http://stacks.iop.org/0004-637X/839/i=1/a=68?key=crossref.646085eac9cc08a12f0de51ac7dce969
More Details

Authors: Reid Hamish A. S., and Kontar Eduard P.
Title: Langmuir wave electric fields induced by electron beams in the heliosphere
Abstract:

Solar electron beams responsible for type III radio emission generate Langmuir waves as they propagate out from the Sun. The Langmuir waves are observed via in situ electric field measurements. These Langmuir waves are not smoothly distributed but occur in discrete clumps, commonly attributed to the turbulent nature of the solar wind electron density. Exactly how the density turbulence modulates the Langmuir wave electric fields is understood only qualitatively. Using weak turbulence simulations, we investigate how solar wind density turbulence changes the probability distribution functions, mean value and variance of the beam-driven electric field distributions. Simulations show rather complicated forms of the distribution that are dependent upon how the electric fields are sampled. Ge. . .
Date: 02/2017 Publisher: Astronomy & Astrophysics Pages: A44 DOI: 10.1051/0004-6361/201629697 Available at: http://www.aanda.org/10.1051/0004-6361/201629697http://www.aanda.org/10.1051/0004-6361/201629697/pdf
More Details

Authors: Hill M. E., Mitchell D. G., Andrews G. B., Cooper S. A., Gurnee R. S., et al.
Title: The Mushroom: A half-sky energetic ion and electron detector
Abstract:

We present a time-of-flight mass spectrometer design for the measurement of ions in the 30 keV to 10 MeV range for protons (up to 40 MeV and 150 MeV for He and heavy ions, respectively) and 30 keV to 1 MeV range for electrons, covering half of the sky with 80 apertures. The instrument, known as the "Mushroom," owing to its shape, solves the field of view problem for magnetospheric and heliospheric missions that employ three-axis stabilized spacecraft, yet still require extended angular coverage; the Mushroom is also compatible with a spinning spacecraft. The most important new feature of the Mushroom is the method through which uncomplicated electrostatic optics and clean position sensing combine to permit many apertures to fit into a compact, low-mass sensor head (or wedge), several of. . .
Date: 02/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022614 Available at: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2016JA022614
More Details

Authors: Meyer-Vernet N., Issautier K., and Moncuquet M.
Title: Quasi-thermal noise spectroscopy: The art and the practice
Abstract:

Quasi-thermal noise spectroscopy is an efficient tool for measuring in situ macroscopic plasma properties in space, using a passive wave receiver at the ports of an electric antenna. This technique was pioneered on spinning spacecraft carrying very long dipole antennas in the interplanetary medium—like ISEE-3 and Ulysses—whose geometry approached a "theoretician's dream." The technique has been extended to other instruments in various types of plasmas on board different spacecraft and will be implemented on several missions in the near future. Such extensions require different theoretical modelizations, involving magnetized, drifting, or dusty plasmas with various particle velocity distributions and antennas being shorter, biased, or made of unequal wires. We give new analytical app. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics Pages: 7925 - 7945 DOI: 10.1002/2017JA024449 Available at: http://doi.wiley.com/10.1002/2017JA024449http://onlinelibrary.wiley.com/wol1/doi/10.1002/2017JA024449/fullpdf
More Details

Authors: Bernhard Germar, Petropavlovskikh Irina, and Mayer Bernhard
Title: Retrieving vertical ozone profiles from measurements of global spectral irradiance
Abstract:

A new method is presented to determine vertical ozone profiles from measurements of spectral global (direct Sun plus upper hemisphere) irradiance in the ultraviolet. The method is similar to the widely used Umkehr technique, which inverts measurements of zenith sky radiance. The procedure was applied to measurements of a high-resolution spectroradiometer installed near the centre of the Greenland ice sheet. Retrieved profiles were validated with balloon-sonde observations and ozone profiles from the space-borne Microwave Limb Sounder (MLS). Depending on altitude, the bias between retrieval results presented in this paper and MLS observations ranges between -5 and +3 %. The magnitude of this bias is comparable, if not smaller, to values reported in the literature for the standard Dobson . . .
Date: 12/2017 Publisher: Atmospheric Measurement Techniques Pages: 4979 - 4994 DOI: 10.5194/amt-10-4979-2017 Available at: https://www.atmos-meas-tech.net/10/4979/2017/https://www.atmos-meas-tech.net/10/4979/2017/amt-10-4979-2017.pdf
More Details

Authors: Pulupa M., Bale S. D., Bonnell J. W., Bowen T. A., Carruth N., et al.
Title: The solar probe plus radio frequency spectrometer: Measurement requirements, analog design, and digital signal processing
Abstract:

The Radio Frequency Spectrometer (RFS) is a two-channel digital receiver and spectrometer, which will make remote sensing observations of radio waves and in situ measurements of electrostatic and electromagnetic fluctuations in the solar wind. A part of the FIELDS suite for Solar Probe Plus (SPP), the RFS is optimized for measurements in the inner heliosphere, where solar radio bursts are more intense and the plasma frequency is higher compared to previous measurements at distances of 1 AU or greater. The inputs to the RFS receiver are the four electric antennas mounted near the front of the SPP spacecraft and a single axis of the SPP search coil magnetometer (SCM). Each RFS channel selects a monopole or dipole antenna input, or the SCM input, via multiplexers. The primary data products. . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023345 Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016JA023345
More Details

Authors: Kasper J. C., Klein K. G., Weber T., Maksimovic M., Zaslavsky A., et al.
Title: A Zone of Preferential Ion Heating Extends Tens of Solar Radii from the Sun
Abstract:

The extreme temperatures and nonthermal nature of the solar corona and solar wind arise from an unidentified physical mechanism that preferentially heats certain ion species relative to others. Spectroscopic indicators of unequal temperatures commence within a fraction of a solar radius above the surface of the Sun, but the outer reach of this mechanism has yet to be determined. Here we present an empirical procedure for combining interplanetary solar wind measurements and a modeled energy equation including Coulomb relaxation to solve for the typical outer boundary of this zone of preferential heating. Applied to two decades of observations by the Wind spacecraft, our results are consistent with preferential heating being active in a zone extending from the transition region in the low. . .
Date: 11/2017 Publisher: The Astrophysical Journal Pages: 126 DOI: 10.3847/1538-4357/aa84b1 Available at: http://stacks.iop.org/0004-637X/849/i=2/a=126?key=crossref.a4fda357a12d19fd2ad1aa8a3897c78f
More Details

2016
Authors: Tracy Patrick J., Kasper Justin C., Raines Jim M., Shearer Paul, Gilbert Jason A., et al.
Title: Constraining Solar Wind Heating Processes by Kinetic Properties of Heavy Ions
Abstract:

We analyze the heavy ion components (A >4 amu ) in collisionally young solar wind plasma and show that there is a clear, stable dependence of temperature on mass, probably reflecting the conditions in the solar corona. We consider both linear and power law forms for the dependence and find that a simple linear fit of the form Ti/Tp=(1.35 ±.02 )mi/mp describes the observations twice as well as the equivalent best fit power law of the form Ti/Tp=(mi/mp) 1.07 ±.01 . Most importantly we find that current model predictions based on turbulent transport and kinetic dissipation are in agreement with observed nonthermal heating in intermediate collisional age plasma for m /q <3.5 , but are . . .
Date: 06/2016 Publisher: Physical Review Letters DOI: 10.1103/PhysRevLett.116.255101 Available at: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.255101
More Details

Pages