Found 9 results
Author Title Type [ Year(Asc)]
Filters: First Letter Of Title is P  [Clear All Filters]
2019
Authors: Riley Pete, Downs Cooper, Linker Jon A., Mikic Zoran, Lionello Roberto, et al.
Title: Predicting the Structure of the Solar Corona and Inner Heliosphere during Parker Solar Probe 's First Perihelion Pass
Abstract:

NASA’s Parker Solar Probe (PSP) spacecraft reached its first perihelion of 35.7 solar radii on 2018 November 5. To aid in mission planning, and in anticipation of the unprecedented measurements to be returned, in late October, we developed a three-dimensional magnetohydrodynamic (MHD) solution for the solar corona and inner heliosphere, driven by the then available observations of the Sun’s photospheric magnetic field. Our model incorporates a wave-turbulence-driven model to heat the corona. Here, we present our predictions for the structure of the solar corona and the likely in situ measurements that PSP will be returning over the next few months. We infer that, in the days prior to first encounter, PSP was immersed in wind emanating from a well-established, positive-polarity north. . .
Date: 04/2019 Publisher: The Astrophysical Journal Pages: L15 DOI: 10.3847/2041-8213/ab0ec3 Available at: http://stacks.iop.org/2041-8205/874/i=2/a=L15?key=crossref.94a3f13ef95cab063c2cc60115d0f410http://stacks.iop.org/2041-8205/874/i=2/a=L15/pd
More Details

Authors: Hein Andreas M., Perakis Nikolaos, Eubanks Marshall, Hibberd Adam, Crowl Adam, et al.
Title: Project Lyra: Sending a spacecraft to 1I/’Oumuamua (former A/2017 U1), the interstellar asteroid
Abstract:

The first definitely interstellar object 1I/'Oumuamua (previously A/2017 U1) observed in our solar system provides the opportunity to directly study material from an other star system. Can such objects be intercepted? The challenge of reaching the object within a reasonable timeframe is formidable due to its high heliocentric hyperbolic excess velocity of about 26 km/s; much faster than any vehicle yet launched. This paper presents a high-level analysis of potential near-term options for a mission to 1I/'Oumuamua and potential similar objects. Reaching 1I/'Oumuamua via a spacecraft launched in a reasonable timeframe of 5-10 years (launch in 2022-2027) requires an Earth departure hyperbolic excess velocity between 33 and 76 km/s for mission durations between 30 and 5 years, respectively.. . .
Date: 08/2019 Publisher: Acta Astronautica Pages: 552 - 561 DOI: 10.1016/j.actaastro.2018.12.042 Available at: https://linkinghub.elsevier.com/retrieve/pii/S0094576518317004
More Details

2018
Authors: éville Victor, Tenerani Anna, and Velli Marco
Title: Parametric Decay and the Origin of the Low-frequency Alfvénic Spectrum of the Solar Wind
Abstract:

The fast solar wind shows a wide spectrum of transverse magnetic and velocity field perturbations. These perturbations are strongly correlated in the sense of Alfvén waves propagating mostly outward, from the Sun to the interplanetary medium. They are likely to be fundamental to the acceleration and the heating of the solar wind. However, the precise origin of the broadband spectrum is unknown to date. Typical periods of chromospheric Alfvén waves are limited to a few minutes, and any longer period perturbations should be strongly reflected at the transition region. In this work, we show that minute long Alfvénic fluctuations are unstable to the parametric instability. Parametric instability enables an inverse energy cascade by exciting several-hour-long periods of Alfvénic fluctuat. . .
Date: 10/2018 Publisher: The Astrophysical Journal Pages: 38 DOI: 10.3847/1538-4357/aadb8f Available at: http://stacks.iop.org/0004-637X/866/i=1/a=38?key=crossref.877507b60fca8d8ddb73692a546936b0
More Details

Authors: Chandran Benjamin D. G.
Title: Parametric instability, inverse cascade and the  range of solar-wind turbulence
Abstract:

In this paper, weak-turbulence theory is used to investigate the nonlinear evolution of the parametric instability in three-dimensional low-β plasmas at wavelengths much greater than the ion inertial length under the assumption that slow magnetosonic waves are strongly damped. It is shown analytically that the parametric instability leads to an inverse cascade of Alfvén wave quanta, and several exact solutions to the wave kinetic equations are presented. The main results of the paper concern the parametric decay of Alfvén waves that initially satisfy e+ ≫ e-, where e+ and e- are the frequency (f) spectra of Alfvén waves propagating in opposite directions along the magnetic field lines. If e+ initially has a peak frequency fDate: 02/2018 Publisher: Journal of Plasma Physics DOI: 10.1017/S0022377818000016 Available at: https://www.cambridge.org/core/product/identifier/S0022377818000016/type/journal_article
More Details

Authors: Milligan Ryan O., and Ireland Jack
Title: On the Performance of Multi-Instrument Solar Flare Observations During Solar Cycle 24
Abstract:

The current fleet of space-based solar observatories offers us a wealth of opportunities to study solar flares over a range of wavelengths. Significant advances in our understanding of flare physics often come from coordinated observations between multiple instruments. Consequently, considerable efforts have been, and continue to be, made to coordinate observations among instruments ( e.g. through the Max Millennium Program of Solar Flare Research). However, there has been no study to date that quantifies how many flares have been observed by combinations of various instruments. Here we describe a technique that retrospectively searches archival databases for flares jointly observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), Solar Dynamics Observatory (SDO)/ EUV Vari. . .
Date: 02/2018 Publisher: Solar Physics DOI: 10.1007/s11207-017-1233-x Available at: http://link.springer.com/10.1007/s11207-017-1233-xhttp://link.springer.com/content/pdf/10.1007/s11207-017-1233-x.pdfhttp://link.springer.com/article/10.1007/s11207-017-1233-x/fulltext.htmlhttp://link.springer.com/content/pdf/10.1007/s11207-017-1233-x.pdf
More Details

Authors: Xiong Ming, Davies Jackie A., Feng Xueshang, Li Bo, Yang Liping, et al.
Title: Prospective White-light Imaging and In Situ Measurements of Quiescent Large-scale Solar-wind Streams from the Parker Solar Probe and Solar Orbiter
Abstract:

Deep-space exploration of the inner heliosphere is in an unprecedented golden age, with the recent and forthcoming launches of the Parker Solar Probe (PSP) and Solar Orbiter (SolO) missions, respectively. In order to both predict and understand the prospective observations by PSP and SolO, we perform forward MHD modeling of the 3D inner heliosphere at solar minimum, and synthesize the white-light (WL) emission that would result from Thomson scattering of sunlight from the coronal and heliospheric plasmas. Both solar rotation and spacecraft trajectory should be considered when reconstructing quiescent large-scale solar-wind streams from PSP and SolO WL observations. When transformed from a static coordinate system into a corotating one, the elliptical orbit of PSP becomes a multiwinding . . .
Date: 12/2018 Publisher: The Astrophysical Journal Pages: 137 DOI: 10.3847/1538-4357/aae978 Available at: http://stacks.iop.org/0004-637X/868/i=2/a=137?key=crossref.fe473eb9a278d1ea105f9203808e2eab
More Details

2016
Authors: Clemens Adam, and Burgess David
Title: Pickup ion processes associated with spacecraft thrusters: Implications for solar probe plus
Abstract:

Chemical thrusters are widely used in spacecraft for attitude control and orbital manoeuvres. They create an exhaust plume of neutral gas which produces ions via photoionization and charge exchange. Measurements of local plasma properties will be affected by perturbations caused by the coupling between the newborn ions and the plasma. A model of neutral expansion has been used in conjunction with a fully three-dimensional hybrid code to study the evolution and ionization over time of the neutral cloud produced by the firing of a mono-propellant hydrazine thruster as well as the interactions of the resulting ion cloud with the ambient solar wind. Results are presented which show that the plasma in the region near to the spacecraft will be perturbed for an extended period of time with the. . .
Date: 03/2016 Publisher: Physics of Plasmas Pages: 032901 DOI: 10.1063/1.4942938 Available at: http://aip.scitation.org/doi/10.1063/1.4942938http://aip.scitation.org/doi/pdf/10.1063/1.4942938
More Details

Authors: Cranmer Steven R.
Title: Predictions for Dusty Mass Loss from Asteroids During Close Encounters with Solar Probe Plus
Abstract:

The Solar Probe Plus ( SPP) mission will explore the Sun's corona and innermost solar wind starting in 2018. The spacecraft will also come close to a number of Mercury-crossing asteroids with perihelia less than 0.3 AU. At small heliocentric distances, these objects may begin to lose mass, thus becoming "active asteroids" with comet-like comae or tails. This paper assembles a database of 97 known Mercury-crossing asteroids that may be encountered by SPP, and it presents estimates of their time-dependent visible-light fluxes and mass loss rates. Assuming a similar efficiency of sky background subtraction as was achieved by STEREO , we find that approximately 80 % of these asteroids are bright enough to be observed by the Wide-field Imager for SPP (WISPR). A model of gas/dust mass loss fr. . .
Date: 11/2016 Publisher: Earth, Moon, and Planets Pages: 51 - 79 DOI: 10.1007/s11038-016-9490-5 Available at: http://link.springer.com/10.1007/s11038-016-9490-5http://link.springer.com/content/pdf/10.1007/s11038-016-9490-5.pdfhttp://link.springer.com/content/pdf/10.1007/s11038-016-9490-5.pdfhttp://link.springer.com/article/10.1007/s11038-016-9490-5/fulltext.html
More Details

2015
Authors: Plus M., Auby I., Maurer D., Trut G., Del Amo Y., et al.
Title: Phytoplankton versus macrophyte contribution to primary production and biogeochemical cycles of a coastal mesotidal system. A modelling approach
Abstract:

This study presents an assessment of the contributions of various primary producers to the global annual production and N/P cycles of a coastal system, namely the Arcachon Bay, by means of a numerical model. This 3D model fully couples hydrodynamic with ecological processes and simulates nitrogen, silicon and phosphorus cycles as well as phytoplankton, macroalgae and seagrasses. Total annual production rates for the different components were calculated for different years (2005, 2007 and 2009) during a time period of drastic reduction in seagrass beds since 2005. The total demand of nitrogen and phosphorus was also calculated and discussed with regards to the riverine inputs. Moreover, this study presents the first estimation of particulate organic carbon export to the adjacent open oce. . .
Date: 11/2015 Publisher: Estuarine, Coastal and Shelf Science Pages: 52 - 60 DOI: 10.1016/j.ecss.2015.09.003 Available at: https://linkinghub.elsevier.com/retrieve/pii/S0272771415300810https://api.elsevier.com/content/article/PII:S0272771415300810?httpAccept=text/xmlhttps://api.elsevier.com/content/article/PII:S0272771415300810?httpAccept=text/plain
More Details