Found 3 results
Author Title Type [ Year(Asc)]
Filters: First Letter Of Title is O  [Clear All Filters]
Authors: Winslow Reka M., Schwadron Nathan A., Lugaz é, Guo Jingnan, Joyce Colin J., et al.
Title: Opening a Window on ICME-driven GCR Modulation in the Inner Solar System

Interplanetary coronal mass ejections (ICMEs) often cause Forbush decreases (Fds) in the flux of galactic cosmic rays (GCRs). We investigate how a single ICME, launched from the Sun on 2014 February 12, affected GCR fluxes at Mercury, Earth, and Mars. We use GCR observations from MESSENGER at Mercury, ACE/LRO at the Earth/Moon, and MSL at Mars. We find that Fds are steeper and deeper closer to the Sun, and that the magnitude of the magnetic field in the ICME magnetic ejecta as well as the “strength” of the ICME sheath both play a large role in modulating the depth of the Fd. Based on our results, we hypothesize that (1) the Fd size decreases exponentially with heliocentric distance, and (2) that two-step Fds are more common closer to the Sun. Both hypotheses will be directly verifia. . .
Date: 04/2018 Publisher: The Astrophysical Journal Pages: 139 DOI: 10.3847/1538-4357/aab098 Available at:
More Details

Authors: Dubois S., Savoye N., émare A., Plus M., Charlier K., et al.
Title: Origin and composition of sediment organic matter in a coastal semi-enclosed ecosystem: An elemental and isotopic study at the ecosystem space scale

The origin and composition of sediment organic matter (SOM) were investigated together with its spatial distribution in the Arcachon Bay - a macrotidal lagoon that shelters the largest Zostera noltii meadow in Europe - using elemental and isotopic ratios. Subtidal and intertidal sediments and primary producers were both sampled in April 2009. Their elemental and isotopic compositions were assessed. Relative contributions of each source to SOM were estimated using a mixing model. The SOM composition tended to be homogeneous over the whole ecosystem and reflected the high diversity of primary producers in this system. On average, SOM was composed of 25% of decayed phanerogams, 19% of microphytobenthos, 20% of phytoplankton, 19% of river SPOM and 17% of macroalgae. There was no evidence of. . .
Date: 06/2012 Publisher: Journal of Marine Systems Pages: 64 - 73 DOI: 10.1016/j.jmarsys.2011.10.009 Available at:
More Details

Authors: Lewis John S.
Title: Observability of spectroscopically active compounds in the atmosphere of Jupiter

The abundances of several hundred volatile compounds have been calculated at several different levels in the atmosphere of Jupiter. Complete chemical equilibrium has been assumed, and a solar-composition, adiabatic-equilibrium model of the atmospheric composition and structure is used throughout. The results which relate to upper limits on the abundances of spectroscopically active compounds in the upper atmosphere are, however, directly applicable to subadiabatic models. The principal results are that only H2, CH4, and NH3 are predicted to be observable with present techniques. These three species are in fact the only compounds conclusively identified in Jupiter spectra to date. A number of plausible previously suggested constituents of the upper atmosp. . .
Date: 05/1969 Publisher: Icarus Pages: 393 - 409 DOI: 10.1016/0019-1035(69)90094-3 Available at:
More Details