Found 5 results
Author Title Type [ Year(Asc)]
Filters: First Letter Of Title is O  [Clear All Filters]
2020
Authors: Roberts Aaron, Karimabadi Homa, Sipes Tamara, Ko Yuan-Kuen, and Lepri Susan
Title: Objectively Determining States of the Solar Wind Using Machine Learning
Abstract:

Conclusively determining the states of the solar wind will aid in tracing the origins of those states to the Sun, and in the process help to find the wind’s origin and acceleration mechanism(s). Prior studies have characterized the various states of the wind, making lists that are only partially based on objective criteria; different approaches obtain substantially different results. To uncover the unbiased states of the solar wind, we use "k-means clustering"—an unsupervised machine learning method—including constructed multipoint variables. The method allows exploration of different descriptive state variables and numbers of fundamental states (clusters). We show that the clusters reveal structures similar to those found by more ad hoc means, including coronal hole wind, interpl. . .
Date: 02/2020 Publisher: The Astrophysical Journal Pages: 153 DOI: 10.3847/1538-4357/ab5a7a Available at: https://iopscience.iop.org/article/10.3847/1538-4357/ab5a7a
More Details

Authors: Bandyopadhyay Riddhi, Matthaeus W. H., Parashar T. N., Chhiber R., Ruffolo D., et al.
Title: Observations of Energetic-particle Population Enhancements along Intermittent Structures near the Sun from the Parker Solar Probe
Abstract:

Observations at 1 au have confirmed that enhancements in measured energetic-particle (EP) fluxes are statistically associated with "rough" magnetic fields, i.e., fields with atypically large spatial derivatives or increments, as measured by the Partial Variance of Increments (PVI) method. One way to interpret this observation is as an association of the EPs with trapping or channeling within magnetic flux tubes, possibly near their boundaries. However, it remains unclear whether this association is a transport or local effect; i.e., the particles might have been energized at a distant location, perhaps by shocks or reconnection, or they might experience local energization or re-acceleration. The Parker Solar Probe (PSP), even in its first two orbits, offers a unique opportunity to study. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 61 DOI: 10.3847/1538-4365/ab6220 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab6220
More Details

Authors: Qudsi R. A., Maruca B. A., Matthaeus W. H., Parashar T. N., Bandyopadhyay Riddhi, et al.
Title: Observations of Heating along Intermittent Structures in the Inner Heliosphere from PSP Data
Abstract:

The solar wind proton temperature at 1 au has been found to be correlated with small-scale intermittent magnetic structures, i.e., regions with enhanced temperature are associated with coherent structures, such as current sheets. Using Parker Solar Probe data from the first encounter, we study this association using measurements of the radial proton temperature, employing the partial variance of increments (PVI) technique to identify intermittent magnetic structures. We observe that the probability density functions of high PVI events have higher median temperatures than those with lower PVI. The regions in space where PVI peaks were also locations that had enhanced temperatures when compared with similar regions, suggesting a heating mechanism in the young solar wind that is associated. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 46 DOI: 10.3847/1538-4365/ab5c19 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab5c19
More Details

Authors: Leske R. A., Christian E. R., Cohen C. M. S., Cummings A. C., Davis A. J., et al.
Title: Observations of the 2019 April 4 Solar Energetic Particle Event at the Parker Solar Probe
Abstract:

A solar energetic particle event was detected by the Integrated Science Investigation of the Sun (IS☉IS) instrument suite on Parker Solar Probe (PSP) on 2019 April 4 when the spacecraft was inside of 0.17 au and less than 1 day before its second perihelion, providing an opportunity to study solar particle acceleration and transport unprecedentedly close to the source. The event was very small, with peak 1 MeV proton intensities of ̃0.3 particles (cm2 sr s MeV)-1, and was undetectable above background levels at energies above 10 MeV or in particle detectors at 1 au. It was strongly anisotropic, with intensities flowing outward from the Sun up to 30 times greater than those flowing inward persisting throughout the event. Temporal association between particle incre. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 35 DOI: 10.3847/1538-4365/ab5712 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab5712
More Details

2018
Authors: Winslow Reka M., Schwadron Nathan A., Lugaz é, Guo Jingnan, Joyce Colin J., et al.
Title: Opening a Window on ICME-driven GCR Modulation in the Inner Solar System
Abstract:

Interplanetary coronal mass ejections (ICMEs) often cause Forbush decreases (Fds) in the flux of galactic cosmic rays (GCRs). We investigate how a single ICME, launched from the Sun on 2014 February 12, affected GCR fluxes at Mercury, Earth, and Mars. We use GCR observations from MESSENGER at Mercury, ACE/LRO at the Earth/Moon, and MSL at Mars. We find that Fds are steeper and deeper closer to the Sun, and that the magnitude of the magnetic field in the ICME magnetic ejecta as well as the “strength” of the ICME sheath both play a large role in modulating the depth of the Fd. Based on our results, we hypothesize that (1) the Fd size decreases exponentially with heliocentric distance, and (2) that two-step Fds are more common closer to the Sun. Both hypotheses will be directly verifia. . .
Date: 04/2018 Publisher: The Astrophysical Journal Pages: 139 DOI: 10.3847/1538-4357/aab098 Available at: http://stacks.iop.org/0004-637X/856/i=2/a=139?key=crossref.287f3cbc519cdfae455bd8b9d0a9351a
More Details