Found 3 results
Author Title Type [ Year(Asc)]
Filters: Keyword is interplanetary turbulence  [Clear All Filters]
2019
Authors: Parashar T. N., Cuesta M., and Matthaeus W. H.
Title: Reynolds Number and Intermittency in the Expanding Solar Wind: Predictions Based on Voyager Observations
Abstract:

The large-scale features of the solar wind are examined in order to predict small-scale features of turbulence in unexplored regions of the heliosphere. The strategy is to examine how system size, or effective Reynolds number Re, varies, and then how this quantity influences observable statistical properties, including intermittency properties of solar wind turbulence. The expectation based on similar hydrodynamics scalings is that the kurtosis, of the small-scale magnetic field increments, will increase with increasing Re. Simple theoretical arguments as well as Voyager observations indicate that effective interplanetary turbulence Re decreases with increasing heliocentric distance. The decrease of scale-dependent magnetic increment kurtosis with increasing heliocentric distance is ver. . .
Date: 10/2019 Publisher: The Astrophysical Journal Pages: L57 DOI: 10.3847/2041-8213/ab4a82 Available at: https://iopscience.iop.org/article/10.3847/2041-8213/ab4a82
More Details

Authors: Pecora Francesco, Greco Antonella, Hu Qiang, Servidio Sergio, Chasapis Alexandros G., et al.
Title: Single-spacecraft Identification of Flux Tubes and Current Sheets in the Solar Wind
Abstract:

A novel technique is presented for describing and visualizing the local topology of the magnetic field using single-spacecraft data in the solar wind. The approach merges two established techniques: the Grad─Shafranov (GS) reconstruction method, which provides a plausible regional two-dimensional magnetic field surrounding the spacecraft trajectory, and the Partial Variance of Increments (PVI) technique that identifies coherent magnetic structures, such as current sheets. When applied to one month of Wind magnetic field data at 1 minute resolution, we find that the quasi-two-dimensional turbulence emerges as a sea of magnetic islands and current sheets. Statistical analysis confirms that current sheets associated with high values of PVI are mostly located between and within the GS mag. . .
Date: 08/2019 Publisher: The Astrophysical Journal Pages: L11 DOI: 10.3847/2041-8213/ab32d9 Available at: https://iopscience.iop.org/article/10.3847/2041-8213/ab32d9
More Details

2018
Authors: Tsurutani Bruce T., Lakhina Gurbax S., Sen Abhijit, Hellinger Petr, Glassmeier Karl-Heinz, et al.
Title: A Review of Alfvénic Turbulence in High-Speed Solar Wind Streams: Hints From Cometary Plasma Turbulence
Abstract:

Solar wind turbulence within high-speed streams is reviewed from the point of view of embedded single nonlinear Alfvén wave cycles, discontinuities, magnetic decreases (MDs), and shocks. For comparison and guidance, cometary plasma turbulence is also briefly reviewed. It is demonstrated that cometary nonlinear magnetosonic waves phase-steepen, with a right-hand circular polarized foreshortened front and an elongated, compressive trailing edge. The former part is a form of "wave breaking" and the latter that of "period doubling." Interplanetary nonlinear Alfvén waves, which are arc polarized, have a 180° foreshortened front and with an elongated trailing edge. Alfvén waves have polarizations different from those of cometary magnetosonic waves, indicating that helicity is a durable fe. . .
Date: Jan-04-2018 Publisher: Journal of Geophysical Research: Space Physics Pages: 2458 - 2492 DOI: 10.1002/jgra.v123.410.1002/2017JA024203 Available at: https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2017JA024203
More Details