Found 7 results
Author Title Type [ Year(Asc)]
Filters: Keyword is Sun: magnetic fields  [Clear All Filters]
Authors: Chang Qing, Xu Xiaojun, Xu Qi, Zhong Jun, Xu Jiaying, et al.
Title: Multiple-point Modeling the Parker Spiral Configuration of the Solar Wind Magnetic Field at the Solar Maximum of Solar Cycle 24

By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r = R 0 (neglecting solar gravitation and acceleration by high coronal temperature), the large-scale solar wind magnetic field lines are distorted into a Parker spiral configuration, which is usually simplified to an Archimedes spiral. Using magnetic field observations near Mercury, Venus, and Earth during solar maximum of Solar Cycle 24, we statistically surveyed the Parker spiral angles and obtained the empirical equations of the Archimedes and Parker spirals by fitting the multiple-point results. We found that the solar wind magnetic field configurations are slightly different during different years. Archimedes and Parker spiral configuration. . .
Date: 10/2019 Publisher: The Astrophysical Journal Pages: 102 DOI: 10.3847/1538-4357/ab412a Available at:
More Details

Authors: Riley Pete, Downs Cooper, Linker Jon A., Mikic Zoran, Lionello Roberto, et al.
Title: Predicting the Structure of the Solar Corona and Inner Heliosphere during Parker Solar Probe 's First Perihelion Pass

NASA’s Parker Solar Probe (PSP) spacecraft reached its first perihelion of 35.7 solar radii on 2018 November 5. To aid in mission planning, and in anticipation of the unprecedented measurements to be returned, in late October, we developed a three-dimensional magnetohydrodynamic (MHD) solution for the solar corona and inner heliosphere, driven by the then available observations of the Sun’s photospheric magnetic field. Our model incorporates a wave-turbulence-driven model to heat the corona. Here, we present our predictions for the structure of the solar corona and the likely in situ measurements that PSP will be returning over the next few months. We infer that, in the days prior to first encounter, PSP was immersed in wind emanating from a well-established, positive-polarity north. . .
Date: 04/2019 Publisher: The Astrophysical Journal Pages: L15 DOI: 10.3847/2041-8213/ab0ec3 Available at:
More Details

Authors: Owens Mathew J., Lockwood Mike, Barnard Luke A., and MacNeil Allan R.
Title: Generation of Inverted Heliospheric Magnetic Flux by Coronal Loop Opening and Slow Solar Wind Release

In situ spacecraft observations provide much-needed constraints on theories of solar wind formation and release, particularly the highly variable slow solar wind, which dominates near-Earth space. Previous studies have shown an association between local inversions in the heliospheric magnetic field (HMF) and solar wind released from the vicinity of magnetically closed coronal structures. We here show that in situ properties of inverted HMF are consistent with the same hot coronal source regions as the slow solar wind. We propose that inverted HMF is produced by solar wind speed shear, which results from interchange reconnection between a coronal loop and open flux tube, and introduces a pattern of fast─slow─fast wind along a given HMF flux tube. This same loop-opening process is tho. . .
Date: 11/2018 Publisher: The Astrophysical Journal Pages: L14 DOI: 10.3847/2041-8213/aaee82 Available at:
More Details

Authors: Bourdin Philippe, Singh Nishant K., and Brandenburg Axel
Title: Magnetic Helicity Reversal in the Corona at Small Plasma Beta

Solar and stellar dynamos shed small-scale and large-scale magnetic helicity of opposite signs. However, solar wind observations and simulations have shown that some distance above the dynamo both the small-scale and large-scale magnetic helicities have reversed signs. With realistic simulations of the solar corona above an active region now being available, we have access to the magnetic field and current density along coronal loops. We show that a sign reversal in the horizontal averages of the magnetic helicity occurs when the local maximum of the plasma beta drops below unity and the field becomes nearly fully force free. Hence, this reversal is expected to occur well within the solar corona and would not directly be accessible to in situ measurements with the Parker Solar Probe or . . .
Date: 12/2018 Publisher: The Astrophysical Journal Pages: 2 DOI: 10.3847/1538-4357/aae97a Available at:
More Details

Authors: Roberts Merrill A, Uritsky Vadim M, DeVore Richard, and Karpen Judith T
Title: Simulated Encounters of the Parker Solar Probe with a Coronal-hole Jet

Solar coronal jets are small, transient, collimated ejections most easily observed in coronal holes (CHs). The upcoming Parker Solar Probe (PSP) mission provides the first opportunity to encounter CH jets in situ near the Sun and examine their internal structure and dynamics. Using projected mission orbital parameters, we have simulated PSP encounters with a fully three-dimensional magnetohydrodynamic (MHD) model of a CH jet. We find that three internal jet regions, featuring different wave modes and levels of compressibility, have distinct identifying signatures detectable by PSP. The leading Alfvén wave front and its immediate wake are characterized by trans-Alfvénic plasma flows with mild density enhancements. This front exhibits characteristics of a fast switch-on MHD shock, whose. . .
Date: 10/2018 Publisher: The Astrophysical Journal Pages: 14 DOI: 10.3847/1538-4357/aadb41 Available at:
More Details

Authors: Kong Xiangliang, Guo Fan, Giacalone Joe, Li Hui, and Chen Yao
Title: The Acceleration of High-energy Protons at Coronal Shocks: The Effect of Large-scale Streamer-like Magnetic Field Structures

Recent observations have shown that coronal shocks driven by coronal mass ejections can develop and accelerate particles within several solar radii in large solar energetic particle (SEP) events. Motivated by this, we present an SEP acceleration study that including the process in which a fast shock propagates through a streamer-like magnetic field with both closed and open field lines in the low corona region. The acceleration of protons is modeled by numerically solving the Parker transport equation with spatial diffusion both along and across the magnetic field. We show that particles can be sufficiently accelerated to up to several hundred MeV within 2-3 solar radii. When the shock propagates through a streamer-like magnetic field, particles are more efficiently accelerated compared. . .
Date: 12/2017 Publisher: The Astrophysical Journal Pages: 38 DOI: 10.3847/1538-4357/aa97d7 Available at:
More Details

Authors: Reid Hamish A. S., and Kontar Eduard P.
Title: Langmuir wave electric fields induced by electron beams in the heliosphere

Solar electron beams responsible for type III radio emission generate Langmuir waves as they propagate out from the Sun. The Langmuir waves are observed via in situ electric field measurements. These Langmuir waves are not smoothly distributed but occur in discrete clumps, commonly attributed to the turbulent nature of the solar wind electron density. Exactly how the density turbulence modulates the Langmuir wave electric fields is understood only qualitatively. Using weak turbulence simulations, we investigate how solar wind density turbulence changes the probability distribution functions, mean value and variance of the beam-driven electric field distributions. Simulations show rather complicated forms of the distribution that are dependent upon how the electric fields are sampled. Ge. . .
Date: 02/2017 Publisher: Astronomy & Astrophysics Pages: A44 DOI: 10.1051/0004-6361/201629697 Available at:
More Details