Found 22 results
Author Title Type [ Year(Asc)]
Filters: Keyword is Sun: corona  [Clear All Filters]
2019
Authors: Chhiber Rohit, Usmanov Arcadi V., Matthaeus William H., and Goldstein Melvyn L.
Title: Contextual Predictions for the Parker Solar Probe . I. Critical Surfaces and Regions
Abstract:

The solar corona and young solar wind may be characterized by critical surfaces—the sonic, Alfvén, and first plasma-β unity surfaces—that demarcate regions where the solar wind flow undergoes certain crucial transformations. Global numerical simulations and remote sensing observations offer a natural mode for the study of these surfaces at large scales, thus providing valuable context for the high-resolution in situ measurements expected from the recently launched Parker Solar Probe (PSP). The present study utilizes global three-dimensional magnetohydrodynamic (MHD) simulations of the solar wind to characterize the critical surfaces and investigate the flow in propinquitous regions. Effects of solar activity are incorporated by varying source magnetic dipole tilts and employing ma. . .
Date: 03/2019 Publisher: The Astrophysical Journal Supplement Series Pages: 11 DOI: 10.3847/1538-4365/ab0652 Available at: http://stacks.iop.org/0067-0049/241/i=1/a=11?key=crossref.5e73dbbb501083f4d606cdf21e74f766http://stacks.iop.org/0067-0049/241/i=1/a=11/
More Details

Authors: Riley Pete, Downs Cooper, Linker Jon A., Mikic Zoran, Lionello Roberto, et al.
Title: Predicting the Structure of the Solar Corona and Inner Heliosphere during Parker Solar Probe 's First Perihelion Pass
Abstract:

NASA’s Parker Solar Probe (PSP) spacecraft reached its first perihelion of 35.7 solar radii on 2018 November 5. To aid in mission planning, and in anticipation of the unprecedented measurements to be returned, in late October, we developed a three-dimensional magnetohydrodynamic (MHD) solution for the solar corona and inner heliosphere, driven by the then available observations of the Sun’s photospheric magnetic field. Our model incorporates a wave-turbulence-driven model to heat the corona. Here, we present our predictions for the structure of the solar corona and the likely in situ measurements that PSP will be returning over the next few months. We infer that, in the days prior to first encounter, PSP was immersed in wind emanating from a well-established, positive-polarity north. . .
Date: 04/2019 Publisher: The Astrophysical Journal Pages: L15 DOI: 10.3847/2041-8213/ab0ec3 Available at: http://stacks.iop.org/2041-8205/874/i=2/a=L15?key=crossref.94a3f13ef95cab063c2cc60115d0f410http://stacks.iop.org/2041-8205/874/i=2/a=L15/pd
More Details

Authors: Perrone Denise, Stansby D, Horbury T S, and Matteini L
Title: Thermodynamics of pure fast solar wind: radial evolution of the temperature–speed relationship in the inner heliosphereABSTRACT
Abstract:

A strong correlation between speed and proton temperature has been observed, across many years, on hourly averaged measurements in the solar wind. Here, we show that this relationship is also observed at a smaller scale on intervals of a few days, within a single stream. Following the radial evolution of a well-defined stream of coronal-hole plasma, we show that the temperature-speed (T-V) relationship evolves with distance, implying that the T-V relationship at 1 au cannot be used as a proxy for that near the Sun. We suggest that this behaviour could be a combination of the anticorrelation between speed and flux-tube expansion factor near the Sun and the effect of a continuous heating experienced by the plasma during the expansion. We also show that the cooling index for the radial evo. . .
Date: 09/2019 Publisher: Monthly Notices of the Royal Astronomical Society Pages: 2380 - 2386 DOI: 10.1093/mnras/stz1877 Available at: https://academic.oup.com/mnras/article/488/2/2380/5530769http://academic.oup.com/mnras/article-pdf/488/2/2380/28979632/stz1877.pdfhttp://academic.oup.com/mnras/advance-article-pdf/doi/10.1093/mnras/stz1877/28924256/stz1877.pdf
More Details

2018
Authors: Owens Mathew J., Lockwood Mike, Barnard Luke A., and MacNeil Allan R.
Title: Generation of Inverted Heliospheric Magnetic Flux by Coronal Loop Opening and Slow Solar Wind Release
Abstract:

In situ spacecraft observations provide much-needed constraints on theories of solar wind formation and release, particularly the highly variable slow solar wind, which dominates near-Earth space. Previous studies have shown an association between local inversions in the heliospheric magnetic field (HMF) and solar wind released from the vicinity of magnetically closed coronal structures. We here show that in situ properties of inverted HMF are consistent with the same hot coronal source regions as the slow solar wind. We propose that inverted HMF is produced by solar wind speed shear, which results from interchange reconnection between a coronal loop and open flux tube, and introduces a pattern of fast─slow─fast wind along a given HMF flux tube. This same loop-opening process is tho. . .
Date: 11/2018 Publisher: The Astrophysical Journal Pages: L14 DOI: 10.3847/2041-8213/aaee82 Available at: http://stacks.iop.org/2041-8205/868/i=1/a=L14?key=crossref.317335516eaf9fd091c127050a2fecdd
More Details

Authors: Bourdin Philippe, Singh Nishant K., and Brandenburg Axel
Title: Magnetic Helicity Reversal in the Corona at Small Plasma Beta
Abstract:

Solar and stellar dynamos shed small-scale and large-scale magnetic helicity of opposite signs. However, solar wind observations and simulations have shown that some distance above the dynamo both the small-scale and large-scale magnetic helicities have reversed signs. With realistic simulations of the solar corona above an active region now being available, we have access to the magnetic field and current density along coronal loops. We show that a sign reversal in the horizontal averages of the magnetic helicity occurs when the local maximum of the plasma beta drops below unity and the field becomes nearly fully force free. Hence, this reversal is expected to occur well within the solar corona and would not directly be accessible to in situ measurements with the Parker Solar Probe or . . .
Date: 12/2018 Publisher: The Astrophysical Journal Pages: 2 DOI: 10.3847/1538-4357/aae97a Available at: http://stacks.iop.org/0004-637X/869/i=1/a=2?key=crossref.90fa7f41d90e2c8b57f8248c0437cc6b
More Details

Authors: Xiong Ming, Davies Jackie A., Feng Xueshang, Li Bo, Yang Liping, et al.
Title: Prospective White-light Imaging and In Situ Measurements of Quiescent Large-scale Solar-wind Streams from the Parker Solar Probe and Solar Orbiter
Abstract:

Deep-space exploration of the inner heliosphere is in an unprecedented golden age, with the recent and forthcoming launches of the Parker Solar Probe (PSP) and Solar Orbiter (SolO) missions, respectively. In order to both predict and understand the prospective observations by PSP and SolO, we perform forward MHD modeling of the 3D inner heliosphere at solar minimum, and synthesize the white-light (WL) emission that would result from Thomson scattering of sunlight from the coronal and heliospheric plasmas. Both solar rotation and spacecraft trajectory should be considered when reconstructing quiescent large-scale solar-wind streams from PSP and SolO WL observations. When transformed from a static coordinate system into a corotating one, the elliptical orbit of PSP becomes a multiwinding . . .
Date: 12/2018 Publisher: The Astrophysical Journal Pages: 137 DOI: 10.3847/1538-4357/aae978 Available at: http://stacks.iop.org/0004-637X/868/i=2/a=137?key=crossref.fe473eb9a278d1ea105f9203808e2eab
More Details

Authors: Perrone Denise, Stansby D, Horbury T, and Matteini L
Title: Radial evolution of the solar wind in pure high-speed streams: HELIOS revised observations
Abstract:

Spacecraft observations have shown that the proton temperature in the solar wind falls off with radial distance more slowly than expected for an adiabatic prediction. Usually, previous studies have been focused on the evolution of the solar-wind plasma by using the bulk speed as an order parameter to discriminate different regimes. In contrast, here, we study the radial evolution of pure and homogeneous fast streams (i.e. well-defined streams of coronal-hole plasma that maintain their identity during several solar rotations) by means of re-processed particle data, from the HELIOS satellites between 0.3 and 1 au. We have identified 16 intervals of unperturbed high-speed coronal-hole plasma, from three different sources and measured at different radial distances. The observations show tha. . .
Date: 10/2018 Publisher: Monthly Notices of the Royal Astronomical Society DOI: 10.1093/mnras/sty3348 Available at: https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/sty3348/5237719http://academic.oup.com/mnras/advance-article-pdf/doi/10.1093/mnras/sty3348/27082965/sty3348.pdf
More Details

Authors: Perrone Denise, Stansby D, Horbury T S, and Matteini L
Title: Radial evolution of the solar wind in pure high-speed streams: HELIOS revised observations
Abstract:

Spacecraft observations have shown that the proton temperature in the solar wind falls off with radial distance more slowly than expected for an adiabatic prediction. Usually, previous studies have been focused on the evolution of the solar-wind plasma by using the bulk speed as an order parameter to discriminate different regimes. In contrast, here, we study the radial evolution of pure and homogeneous fast streams (i.e. well-defined streams of coronal-hole plasma that maintain their identity during several solar rotations) by means of re-processed particle data, from the HELIOS satellites between 0.3 and 1 au. We have identified 16 intervals of unperturbed high-speed coronal-hole plasma, from three different sources and measured at different radial distances. The observations show tha. . .
Date: 03/2019 Publisher: Monthly Notices of the Royal Astronomical Society Pages: 3730 - 3737 DOI: 10.1093/mnras/sty3348 Available at: https://academic.oup.com/mnras/article/483/3/3730/5237719http://academic.oup.com/mnras/article-pdf/483/3/3730/27299782/sty3348.pdf
More Details

Authors: Horbury T S, Matteini L, and Stansby D
Title: Short, large-amplitude speed enhancements in the near-Sunfast solar wind
Abstract:

We report the presence of intermittent, short discrete enhancements in plasma speed in the near-Sun high-speed solar wind. Lasting tens of seconds to minutes in spacecraft measurements at 0.3 au, speeds inside these enhancements can reach 1000 km s-1, corresponding to a kinetic energy up to twice that of the bulk high-speed solar wind. These events, which occur around 5 per cent of the time, are Alfvénic in nature with large magnetic field deflections and are the same temperature as the surrounding plasma, in contrast to the bulk fast wind which has a well-established positive speed-temperature correlation. The origin of these speed enhancements is unclear but they may be signatures of discrete jets associated with transient events in the chromosphere or corona. Such large s. . .
Date: 08/2018 Publisher: Monthly Notices of the Royal Astronomical Society Pages: 1980 - 1986 DOI: 10.1093/mnras/sty953 Available at: https://academic.oup.com/mnras/article/478/2/1980/4987231
More Details

Authors: Roberts Merrill A, Uritsky Vadim M, DeVore Richard, and Karpen Judith T
Title: Simulated Encounters of the Parker Solar Probe with a Coronal-hole Jet
Abstract:

Solar coronal jets are small, transient, collimated ejections most easily observed in coronal holes (CHs). The upcoming Parker Solar Probe (PSP) mission provides the first opportunity to encounter CH jets in situ near the Sun and examine their internal structure and dynamics. Using projected mission orbital parameters, we have simulated PSP encounters with a fully three-dimensional magnetohydrodynamic (MHD) model of a CH jet. We find that three internal jet regions, featuring different wave modes and levels of compressibility, have distinct identifying signatures detectable by PSP. The leading Alfvén wave front and its immediate wake are characterized by trans-Alfvénic plasma flows with mild density enhancements. This front exhibits characteristics of a fast switch-on MHD shock, whose. . .
Date: 10/2018 Publisher: The Astrophysical Journal Pages: 14 DOI: 10.3847/1538-4357/aadb41 Available at: http://stacks.iop.org/0004-637X/866/i=1/a=14?key=crossref.839142d08cc9d207f0bd8fb8e2b59c4a
More Details

Authors: Venzmer M. S., and Bothmer V.
Title: Solar-wind predictions for the Parker Solar Probeorbit
Abstract:

Context. The Parker Solar Probe (PSP; formerly Solar Probe Plus) mission will be humanitys first in situ exploration of the solar corona with closest perihelia at 9.86 solar radii (R) distance to the Sun. It will help answer hitherto unresolved questions on the heating of the solar corona and the source and acceleration of the solar wind and solar energetic particles. The scope of this study is to model the solar-wind environment for PSPs unprecedented distances in its prime mission phase during the years 2018 to 2025. The study is performed within the Coronagraphic German And US SolarProbePlus Survey (CGAUSS) which is the German contribution to the PSP mission as part of the Wide-field Imager for Solar PRobe. Aim. We present an empirical solar-wind model for the inner hel. . .
Date: 03/2018 Publisher: Astronomy & Astrophysics Pages: A36 DOI: 10.1051/0004-6361/201731831 Available at: https://www.aanda.org/10.1051/0004-6361/201731831https://www.aanda.org/10.1051/0004-6361/201731831/pdf
More Details

Authors: Reid Hamish A. S., and Kontar Eduard P.
Title: Spatial Expansion and Speeds of Type III Electron Beam Sources in the Solar Corona
Abstract:

A component of space weather, electron beams are routinely accelerated in the solar atmosphere and propagate through interplanetary space. Electron beams interact with Langmuir waves resulting in type III radio bursts. They expand along the trajectory and, using kinetic simulations, we explore the expansion as the electrons propagate away from the Sun. Specifically, we investigate the front, peak, and back of the electron beam in space from derived radio brightness temperatures of fundamental type III emission. The front of the electron beam travels at speeds from 0.2c to 0.7c, significantly faster than the back of the beam, which travels at speeds between 0.12c and 0.35c. The difference in speed between the front and the back elongates the electron beam in time. The rate of beam elonga. . .
Date: 11/2018 Publisher: The Astrophysical Journal Pages: 158 DOI: 10.3847/1538-4357/aae5d4 Available at: http://stacks.iop.org/0004-637X/867/i=2/a=158?key=crossref.0069d201e36ac912893a93028da80455
More Details

Authors: Jeffrey Natasha L. S., Hahn Michael, Savin Daniel W., and Fletcher Lyndsay
Title: Spectroscopic Measurements of the Ion Velocity Distribution at the Base of the Fast Solar Wind
Abstract:

In situ measurements of the fast solar wind reveal non-thermal distributions of electrons, protons, and minor ions extending from 0.3 au to the heliopause. The physical mechanisms responsible for these non-thermal properties and the location where these properties originate remain open questions. Here, we present spectroscopic evidence, from extreme ultraviolet spectroscopy, that the velocity distribution functions (VDFs) of minor ions are already non-Gaussian at the base of the fast solar wind in a coronal hole, at altitudes of <1.1 R . Analysis of Fe, Si, and Mg spectral lines reveals a peaked line-shape core and broad wings that can be characterized by a kappa VDF. A kappa distribution fit gives very small kappa indices off-limb of κ ≈ 1.9-2.5, indicating either (. . .
Date: 03/2018 Publisher: The Astrophysical Journal Pages: L13 DOI: 10.3847/2041-8213/aab08c Available at: http://stacks.iop.org/2041-8205/855/i=1/a=L13?key=crossref.c49731858480faecf31502cc56e0b5f3
More Details

2017
Authors: Kong Xiangliang, Guo Fan, Giacalone Joe, Li Hui, and Chen Yao
Title: The Acceleration of High-energy Protons at Coronal Shocks: The Effect of Large-scale Streamer-like Magnetic Field Structures
Abstract:

Recent observations have shown that coronal shocks driven by coronal mass ejections can develop and accelerate particles within several solar radii in large solar energetic particle (SEP) events. Motivated by this, we present an SEP acceleration study that including the process in which a fast shock propagates through a streamer-like magnetic field with both closed and open field lines in the low corona region. The acceleration of protons is modeled by numerically solving the Parker transport equation with spatial diffusion both along and across the magnetic field. We show that particles can be sufficiently accelerated to up to several hundred MeV within 2-3 solar radii. When the shock propagates through a streamer-like magnetic field, particles are more efficiently accelerated compared. . .
Date: 12/2017 Publisher: The Astrophysical Journal Pages: 38 DOI: 10.3847/1538-4357/aa97d7 Available at: http://stacks.iop.org/0004-637X/851/i=1/a=38?key=crossref.2009ec10fbd1f6f8cd1462070076984f
More Details

Authors: Stenborg Guillermo, and Howard Russell A.
Title: A Heuristic Approach to Remove the Background Intensity on White-light Solar Images. I. STEREO /HI-1 Heliospheric Images
Abstract:

White-light coronal and heliospheric imagers observe scattering of photospheric light from both dust particles (the F-Corona) and free electrons in the corona (the K-corona). The separation of the two coronae is thus vitally important to reveal the faint K-coronal structures (e.g., streamers, co-rotating interaction regions, coronal mass ejections, etc.). However, the separation of the two coronae is very difficult, so we are content in defining a background corona that contains the F- and as little K- as possible. For both the LASCO-C2 and LASCO-C3 coronagraphs aboard the Solar and Heliospheric Observatory (SOHO) and the white-light imagers of the SECCHI suite aboard the Solar Terrestrial Relationships Observatory (STEREO), a time-dependent model of the background corona is generated f. . .
Date: 04/2017 Publisher: The Astrophysical Journal Pages: 68 DOI: 10.3847/1538-4357/aa6a12 Available at: http://stacks.iop.org/0004-637X/839/i=1/a=68?key=crossref.646085eac9cc08a12f0de51ac7dce969
More Details

Authors: Kasper J. C., Klein K. G., Weber T., Maksimovic M., Zaslavsky A., et al.
Title: A Zone of Preferential Ion Heating Extends Tens of Solar Radii from the Sun
Abstract:

The extreme temperatures and nonthermal nature of the solar corona and solar wind arise from an unidentified physical mechanism that preferentially heats certain ion species relative to others. Spectroscopic indicators of unequal temperatures commence within a fraction of a solar radius above the surface of the Sun, but the outer reach of this mechanism has yet to be determined. Here we present an empirical procedure for combining interplanetary solar wind measurements and a modeled energy equation including Coulomb relaxation to solve for the typical outer boundary of this zone of preferential heating. Applied to two decades of observations by the Wind spacecraft, our results are consistent with preferential heating being active in a zone extending from the transition region in the low. . .
Date: 11/2017 Publisher: The Astrophysical Journal Pages: 126 DOI: 10.3847/1538-4357/aa84b1 Available at: http://stacks.iop.org/0004-637X/849/i=2/a=126?key=crossref.a4fda357a12d19fd2ad1aa8a3897c78f
More Details

2015
Authors: de Patoul Judith, Foullon Claire, and Riley Pete
Title: 3D ELECTRON DENSITY DISTRIBUTIONS IN THE SOLAR CORONA DURING SOLAR MINIMA: ASSESSMENT FOR MORE REALISTIC SOLAR WIND MODELING
Abstract:

Knowledge of the electron density distribution in the solar corona put constraints on the magnetic field configurations for coronal modeling and on initial conditions for solar wind modeling. We work with polarized SOHO/LASCO-C2 images from the last two recent minima of solar activity (1996-1997 and 2008-2010), devoid of coronal mass ejections. The goals are to derive the 4D electron density distributions in the corona by applying a newly developed time-dependent tomographic reconstruction method and to compare the results between the two solar minima and with two magnetohydrodynamic models. First, we confirm that the values of the density distribution in thermodynamic models are more realistic than in polytropic ones. The tomography provides more accurate distributions in the polar reg. . .
Date: 11/2015 Publisher: The Astrophysical Journal Pages: 68 DOI: 10.1088/0004-637X/814/1/68 Available at: http://stacks.iop.org/0004-637X/814/i=1/a=68?key=crossref.845557cfda4b2a3786588c8b62dbb093
More Details

Authors: Isenberg Philip A., and Vasquez Bernard J.
Title: KINETIC EVOLUTION OF CORONAL HOLE PROTONS BY IMBALANCED ION-CYCLOTRON WAVES: IMPLICATIONS FOR MEASUREMENTS BY SOLAR PROBE PLUS
Abstract:

We extend the kinetic guiding-center model of collisionless coronal hole protons presented in Isenberg & Vasquez to consider driving by imbalanced spectra of obliquely propagating ion-cyclotron waves. These waves are assumed to be a small by-product of the imbalanced turbulent cascade to high perpendicular wavenumber, and their total intensity is taken to be 1% of the total fluctuation energy. We also extend the kinetic solutions for the proton distribution function in the resulting fast solar wind to heliocentric distances of 20 solar radii, which will be attainable by the Solar Probe Plus spacecraft. We consider three ratios of outward-propagating to inward-propagating resonant intensities: 1, 4, and 9. The self-consistent bulk flow speed reaches fast solar wind values in all case. . .
Date: 08/2015 Publisher: The Astrophysical Journal Pages: 119 DOI: 10.1088/0004-637X/808/2/119 Available at: http://stacks.iop.org/0004-637X/808/i=2/a=119?key=crossref.961efccaa84816c8b4c9e041f523e07f
More Details

Authors: Klein Kristopher G., Perez Jean C., Verscharen Daniel, Mallet Alfred, and Chandran Benjamin D. G.
Title: A MODIFIED VERSION OF TAYLOR’S HYPOTHESIS FOR SOLAR PROBE PLUS OBSERVATIONS
Abstract:

The Solar Probe Plus (SPP) spacecraft will explore the near-Sun environment, reaching heliocentric distances less than 10 {{R}}. Near Earth, spacecraft measurements of fluctuating velocities and magnetic fields taken in the time domain are translated into information about the spatial structure of the solar wind via Taylor’s “frozen turbulence” hypothesis. Near the perihelion of SPP, however, the solar-wind speed is comparable to the Alfvén speed, and Taylor’s hypothesis in its usual form does not apply. In this paper, we show that under certain assumptions, a modified version of Taylor’s hypothesis can be recovered in the near-Sun region. We consider only the transverse, non-compressive component of the fluctuations at length scales exceeding the proton gyrora. . .
Date: 03/2015 Publisher: The Astrophysical Journal Pages: L18 DOI: 10.1088/2041-8205/801/1/L18 Available at: http://stacks.iop.org/2041-8205/801/i=1/a=L18?key=crossref.c92a2bde23ce9cdd58185dec581d5a09
More Details

2014
Authors: Li T. C., Drake J. F., and Swisdak M.
Title: DYNAMICS OF DOUBLE LAYERS, ION ACCELERATION, AND HEAT FLUX SUPPRESSION DURING SOLAR FLARES
Abstract:

Observations of flare-heated electrons in the corona typically suggest confinement of electrons. The confinement mechanism, however, remains unclear. The transport of coronal hot electrons into ambient plasma was recently investigated by particle-in-cell (PIC) simulations. Electron transport was significantly suppressed by the formation of a highly localized, nonlinear electrostatic potential in the form of a double layer (DL). In this work large-scale PIC simulations are performed to explore the dynamics of DLs in larger systems where, instead of a single DL, multiple DLs are generated. The primary DL accelerates return current electrons, resulting in high velocity electron beams that interact with ambient ions. This forms a Buneman unstable system that spawns more DLs. Trapping of hea. . .
Date: 09/2014 Publisher: The Astrophysical Journal Pages: 7 DOI: 10.1088/0004-637X/793/1/7 Available at: http://stacks.iop.org/0004-637X/793/i=1/a=7?key=crossref.1ff276d1b5e9632b2d52ebb5720bc5e6
More Details

Authors: DeForest C. E., Howard T. A., and McComas D. J.
Title: INBOUND WAVES IN THE SOLAR CORONA: A DIRECT INDICATOR OF ALFVÉN SURFACE LOCATION
Abstract:

The tenuous supersonic solar wind that streams from the top of the corona passes through a natural boundary—the Alfvén surface—that marks the causal disconnection of individual packets of plasma and magnetic flux from the Sun itself. The Alfvén surface is the locus where the radial motion of the accelerating solar wind passes the radial Alfvén speed, and therefore any displacement of material cannot carry information back down into the corona. It is thus the natural outer boundary of the solar corona and the inner boundary of interplanetary space. Using a new and unique motion analysis to separate inbound and outbound motions in synoptic visible-light image sequences from the COR2 coronagraph on board the STEREO-A spacecraft, we have identified inbound wave motion in the outer co. . .
Date: 06/2014 Publisher: The Astrophysical Journal Pages: 124 DOI: 10.1088/0004-637X/787/2/124 Available at: http://stacks.iop.org/0004-637X/787/i=2/a=124?key=crossref.8ca79a982204ddd2b4922cc108364616
More Details

2011
Authors: Velli Marco, Lionello Roberto, Linker Jon A., and ć Zoran
Title: CORONAL PLUMES IN THE FAST SOLAR WIND
Abstract:

The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfvén waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of the study. Time dependence due to plume ignition and disappearance is also discussed. Velocity differences of the order of ~50 km s-1, such as those found in microstreams in the high-speed solar wind, may be easily explained by slightly different heat depositio. . .
Date: 07/2011 Publisher: The Astrophysical Journal Pages: 32 DOI: 10.1088/0004-637X/736/1/32 Available at: http://stacks.iop.org/0004-637X/736/i=1/a=32?key=crossref.9f21641f557225a36ce23f05fa1256f6http://stacks.iop.org/0004-637X/736/i=1/a=32/pdf
More Details