Found 192 results
[ Author(Desc)] Title Type Year
Filters: Keyword is parker solar probe  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Authors: Abbo L., Ofman L., Antiochos S. K., Hansteen V. H., Harra L., et al.
Title: Slow Solar Wind: Observations and Modeling
Abstract:

While it is certain that the fast solar wind originates from coronal holes, where and how the slow solar wind (SSW) is formed remains an outstanding question in solar physics even in the post-SOHO era. The quest for the SSW origin forms a major objective for the planned future missions such as the Solar Orbiter and Solar Probe Plus. Nonetheless, results from spacecraft data, combined with theoretical modeling, have helped to investigate many aspects of the SSW. Fundamental physical properties of the coronal plasma have been derived from spectroscopic and imaging remote-sensing data and in situ data, and these results have provided crucial insights for a deeper understanding of the origin and acceleration of the SSW. Advanced models of the SSW in coronal streamers and other structures ha. . .
Date: 11/2016 Publisher: Space Science Reviews Pages: 55 - 108 DOI: 10.1007/s11214-016-0264-1 Available at: http://link.springer.com/10.1007/s11214-016-0264-1http://link.springer.com/content/pdf/10.1007/s11214-016-0264-1.pdfhttp://link.springer.com/content/pdf/10.1007/s11214-016-0264-1.pdfhttp://link.springer.com/article/10.1007/s11214-016-0264-1/fulltext.html
More Details

Authors: Adhikari L., Zank G. P., and Zhao L.-L.
Title: Does Turbulence Turn off at the Alfvén Critical Surface?
Abstract:

The Parker Solar Probe (PSP) will eventually reach and cross the Alfvén point or surface as it provides us with direct in situ measurements of the solar atmosphere. The Alfvén surface is the location at which the large-scale bulk solar wind speed ${\boldsymbol{U}}$ and the Alfvén speed ${\boldsymbol{V}}$ A are equal, and thus it separates sub-Aflvénic coronal flow $| {\boldsymbol{U}}| \ll | {{\boldsymbol{V}}}_{{\rm{A}}}| $ from super-Alfv. . .
Date: Jan-05-2019 Publisher: The Astrophysical Journal Pages: 26 DOI: 10.3847/1538-4357/ab141c Available at: https://iopscience.iop.org/article/10.3847/1538-4357/ab141c
More Details

Authors: Adhikari L., Zank G. P., Zhao L.-L., Kasper J. C., Korreck K. E., et al.
Title: Turbulence Transport Modeling and First Orbit Parker Solar Probe ( PSP ) Observations
Abstract:

The Parker Solar Probe (PSP) achieved its first orbit perihelion on 2018 November 6, reaching a heliocentric distance of about 0.165 au (35.55 R). Here, we study the evolution of fully developed turbulence associated with the slow solar wind along the PSP trajectory between 35.55 R and 131.64 R in the outbound direction, comparing observations to a theoretical turbulence transport model. Several turbulent quantities, such as the fluctuating kinetic energy and the corresponding correlation length, the variance of density fluctuations, and the solar wind proton temperature are determined from the PSP Solar Wind Electrons Alphas and Protons (SWEAP) plasma data along its trajectory between 35.55 R and 131.64 R. The evolut. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 38 DOI: 10.3847/1538-4365/ab5852 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab5852
More Details

Authors: Agapitov O. V., de Wit Dudok, Mozer F. S., Bonnell J. W., Drake J. F., et al.
Title: Sunward-propagating Whistler Waves Collocated with Localized Magnetic Field Holes in the Solar Wind: Parker Solar Probe Observations at 35.7 R Radii
Abstract:

Observations by the Parker Solar Probe mission of the solar wind at ∼35.7 solar radii reveal the existence of whistler wave packets with frequencies below 0.1 fce (20-80 Hz in the spacecraft frame). These waves often coincide with local minima of the magnetic field magnitude or with sudden deflections of the magnetic field that are called switchbacks. Their sunward propagation leads to a significant Doppler frequency downshift from 200-300 to 20-80 Hz (from 0.2 to 0.5 fce). The polarization of these waves varies from quasi-parallel to significantly oblique with wave normal angles that are close to the resonance cone. Their peak amplitude can be as large as 2-4 nT. Such values represent approximately 10% of the background magnetic field, which is considerably more. . .
Date: 03/2020 Publisher: The Astrophysical Journal Pages: L20 DOI: 10.3847/2041-8213/ab799c Available at: https://iopscience.iop.org/article/10.3847/2041-8213/ab799c
More Details

Authors: Al-Haddad Nada, Lugaz Noé, Poedts Stefaan, Farrugia Charles J., Nieves-Chinchilla Teresa, et al.
Title: Evolution of Coronal Mass Ejection Properties in the Inner Heliosphere: Prediction for the Solar Orbiter and Parker Solar Probe
Abstract:

The evolution of the magnetic field and plasma quantities inside a coronal mass ejection (CME) with distance are known from statistical studies using data from 1 au monitors, planetary missions, Helios, and Ulysses. This does not cover the innermost heliosphere, below 0.29 au, where no data are yet publicly available. Here, we describe the evolution of the properties of simulated CMEs in the inner heliosphere using two different initiation mechanisms. We compare the radial evolution of these properties with that found from statistical studies based on observations in the inner heliosphere by Helios and MESSENGER. We find that the evolution of the radial size and magnetic field strength is nearly indistinguishable for twisted flux rope from that of writhed CMEs. The evolution of these pr. . .
Date: 10/2019 Publisher: The Astrophysical Journal Pages: 179 DOI: 10.3847/1538-4357/ab4126 Available at: https://iopscience.iop.org/article/10.3847/1538-4357/ab4126
More Details

Authors: Allen R. C., Lario D., Odstrcil D., Ho G. C., Jian L. K., et al.
Title: Solar Wind Streams and Stream Interaction Regions Observed by the Parker Solar Probe with Corresponding Observations at 1 au
Abstract:

Several fast solar wind streams and stream interaction regions (SIRs) were observed by the Parker Solar Probe (PSP) during its first orbit (2018 September─2019 January). During this time, several recurring SIRs were also seen at 1 au at both L1 (Advanced Composition Explorer (ACE) and Wind) and the location of the Solar Terrestrial Relations Observatory-Ahead (STEREO-A). In this paper, we compare four fast streams observed by PSP at different radial distances during its first orbit. For three of these fast stream events, measurements from L1 (ACE and Wind) and STEREO-A indicated that the fast streams were observed by both PSP and at least one of the 1 au monitors. Our associations are supported by simulations made by the ENLIL model driven by GONG-(ADAPT-)WSA, which allows us to conte. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 36 DOI: 10.3847/1538-4365/ab578f Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab578f
More Details

Authors: Amicis Raffaella ’, Matteini Lorenzo, and Bruno Roberto
Title: On slow solar wind with high Alfvénicity: from composition and microphysics to spectral properties
Abstract:

Alfvénic fluctuations are very common features in the solar wind and are found especially within the main portion of fast-wind streams while the slow wind usually is less Alfvénic and more variable. In general, the fast and slow winds show many differences, which span from the large-scale structure to small-scale phenomena, including also a different turbulent behaviour. Recent studies, however, have shown that even the slow wind can sometimes be highly Alfvénic, with fluctuations as large as those of the fast wind. This study is devoted to presenting many facets of this Alfvénic slow solar wind, including for example the study of the source regions and their connection to coronal structures, large-scale properties, and microscale phenomena and also impact on the spectral features. . . .
Date: 3/2019 Publisher: Monthly Notices of the Royal Astronomical Society DOI: 10.1093/mnras/sty3329 Available at: https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/sty3329/5245187http://academic.oup.com/mnras/advance-article-pdf/doi/10.1093/mnras/sty3329/27125375/sty3329.pdf
More Details

B
Authors: Badman Samuel T., Bale Stuart D., Oliveros Juan C. Martín, Panasenco Olga, Velli Marco, et al.
Title: Magnetic Connectivity of the Ecliptic Plane within 0.5 au: Potential Field Source Surface Modeling of the First Parker Solar Probe Encounter
Abstract:

We compare magnetic field measurements taken by the FIELDS instrument on board Parker Solar Probe (PSP) during its first solar encounter to predictions obtained by potential field source surface (PFSS) modeling. Ballistic propagation is used to connect the spacecraft to the source surface. Despite the simplicity of the model, our results show striking agreement with PSP's first observations of the heliospheric magnetic field from ̃0.5 au (107.5 R) down to 0.16 au (35.7 R). Further, we show the robustness of the agreement is improved both by allowing the photospheric input to the model to vary in time, and by advecting the field from PSP down to the PFSS model domain using in situ PSP/Solar Wind Electrons Alphas and Protons measurements of the solar wind spee. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 23 DOI: 10.3847/1538-4365/ab4da7 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab4da7
More Details

Authors: Balat-Pichelin M., Eck J., Heurtault S., and énat H.
Title: Experimental study of pyrolytic boron nitride at high temperature with and without proton and VUV irradiations
Abstract:

In the frame of future exploration missions such as Solar Probe Plus (NASA) and PHOIBOS (ESA), research was carried out to study pyrolytic BN material envisaged as coating for their heat shields. The physico-chemical behavior of CVD pBN at very high temperature with or without hydrogen ions and VUV (Vacuum Ultra-Violet) irradiations was studied in high vacuum together with the in situ measurement of the thermal radiative properties conditioning the thermal equilibrium of the heat shield. Experimental results obtained on massive pBN samples are presented through in situ mass spectrometry and mass loss rate, and post-test microstructural characterization by XRD, SEM, AFM and nano-indentation techniques, some of them leading to mechanical properties. It could be concluded that synergistic . . .
Date: 09/2014 Publisher: Applied Surface Science Pages: 415 - 425 DOI: 10.1016/j.apsusc.2014.07.007 Available at: https://linkinghub.elsevier.com/retrieve/pii/S0169433214015219https://api.elsevier.com/content/article/PII:S0169433214015219?httpAccept=text/xmlhttps://api.elsevier.com/content/article/PII:S0169433214015219?httpAccept=text/plain
More Details

Authors: Bale S. D., Goetz K., Harvey P. R., Turin P., Bonnell J. W., et al.
Title: The FIELDS Instrument Suite for Solar Probe Plus
Abstract:

NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.


Date: 12/2016 Publisher: Space Science Reviews Pages: 49 - 82 DOI: 10.1007/s11214-016-0244-5 Available at: http://link.springer.com/10.1007/s11214-016-0244-5http://link.springer.com/content/pdf/10.1007/s11214-016-0244-5.pd
More Details
Authors: Bale S. D., Badman S. T., Bonnell J. W., Bowen T. A., Burgess D., et al.
Title: Highly structured slow solar wind emerging from an equatorial coronal hole
Abstract:

During the solar minimum, when the Sun is at its least active, the solar wind is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfvénic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain; theories and observations suggest that they may originate at the tips of helmet streamers, from interchange reconnection near coronal hole boundaries, or within coronal holes with highly diverging magnetic fields. The heating mechanism required to drive the solar wind is also unresolved, although candidate mechanisms include Alfvé;n-wave tur. . .
Date: 12/2019 Publisher: Nature Pages: 237 - 242 DOI: 10.1038/s41586-019-1818-7 Available at: http://www.nature.com/articles/s41586-019-1818-7
More Details

Authors: Bandyopadhyay Riddhi, Matthaeus W. H., Parashar T. N., Chhiber R., Ruffolo D., et al.
Title: Observations of Energetic-particle Population Enhancements along Intermittent Structures near the Sun from the Parker Solar Probe
Abstract:

Observations at 1 au have confirmed that enhancements in measured energetic-particle (EP) fluxes are statistically associated with "rough" magnetic fields, i.e., fields with atypically large spatial derivatives or increments, as measured by the Partial Variance of Increments (PVI) method. One way to interpret this observation is as an association of the EPs with trapping or channeling within magnetic flux tubes, possibly near their boundaries. However, it remains unclear whether this association is a transport or local effect; i.e., the particles might have been energized at a distant location, perhaps by shocks or reconnection, or they might experience local energization or re-acceleration. The Parker Solar Probe (PSP), even in its first two orbits, offers a unique opportunity to study. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 61 DOI: 10.3847/1538-4365/ab6220 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab6220
More Details

Authors: Bandyopadhyay Riddhi, Goldstein M. L., Maruca B. A., Matthaeus W. H., Parashar T. N., et al.
Title: Enhanced Energy Transfer Rate in Solar Wind Turbulence Observed near the Sun from Parker Solar Probe
Abstract:

Direct evidence of an inertial-range turbulent energy cascade has been provided by spacecraft observations in heliospheric plasmas. In the solar wind, the average value of the derived heating rate near 1 au is ∼10 3 Jkg −1 s −1  ∼103Jkg−1s−1 , an amount sufficient to account for observed departures from adiabatic expansion. Parker Solar Probe, even during its first solar encounter, offers the first opportunity to compute, in a similar fashion, a fluid-scale energy decay rate, much closer to the solar corona than any prior in situ observations. Using the Politano─Pouquet third-order law and the von Kármán decay law, we estimate the fluid-range energy transfer rate in the inner heliosphere, at heliocentric distance R ranging from 54 RDate: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 48 DOI: 10.3847/1538-4365/ab5dae Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab5dae
More Details

Authors: Banks Michael
Title: NASA launches Parker Solar Probe mission to 'touch' the Sun
Abstract:

NASA has launched a mission to study the Sun’s atmosphere and solar wind that will come far closer to our star than any other craft before.


Date: 09/2018 Publisher: Physics World Pages: 7 - 7 DOI: 10.1088/2058-7058/31/9/11 Available at: http://stacks.iop.org/2058-7058/31/i=9/a=11?key=crossref.74cb5927650dbdc73ec7a9da93480898
More Details
Authors: Bastian T. S.
Title: AIP Conference ProceedingsA view from the ground: Next generation instrumentation for solar and heliospheric physics
Abstract:

The solar and space physics community has recently completed its second decadal survey under the auspices of the National Research Council. An integrated strategy for ground and space based studies of the Sun and space physics has been recommended, with specific recommendations made regarding new instrumentation, programs, and facilities. The ground based component of these recommendations is briefly reviewed here: the Advanced Technology Solar Telescope (ATST), the Frequency Agile Solar Radiotelescope (FASR), and the Coronal Solar Magnetism Observatory (COSMO). Although not considered as part of the decadal portfolio, but of which the community should nevertheless be aware, are the Atacama Large Millimeter/submillimeter Array (ALMA) and the Jansky Very Large Array (VLA). Several additi. . .
Date: 07/2013 Publisher: AIP DOI: 10.1063/1.4811080 Available at: http://aip.scitation.org/doi/abs/10.1063/1.4811080
More Details

Authors: Battams Karl, Knight Matthew M., Kelley Michael S. P., Gallagher Brendan M., Howard Russell A., et al.
Title: Parker Solar Probe Observations of a Dust Trail in the Orbit of (3200) Phaethon
Abstract:

We present the identification and preliminary analysis of a dust trail following the orbit of (3200) Phaethon as seen in white-light images recorded by the Wide-field Imager for Parker Solar Probe (WISPR) instrument on the NASA Parker Solar Probe (PSP) mission. During PSP's first solar encounter in 2018 November, a dust trail following Phaethon's orbit was visible for several days and crossing two fields of view. Preliminary analyses indicate this trail to have a visual magnitude of 15.8 ± 0.3 per pixel and a surface brightness of 25.0 mag arcsec−2 as seen by PSP/WISPR from a distance of ̃0.2 au from the trail. We estimate the total mass of the stream to be ̃(0.4─1.3) × 1012 kg, which is consistent with, though slightly underestimates, the assumed mass of t. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 64 DOI: 10.3847/1538-4365/ab6c68 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab6c68
More Details

Authors: Berčič Laura, Larson Davin, Whittlesey Phyllis, Maksimovic Milan, Badman Samuel T., et al.
Title: Coronal Electron Temperature Inferred from the Strahl Electrons in the Inner Heliosphere: Parker Solar Probe and Helios Observations
Abstract:

The shape of the electron velocity distribution function plays an important role in the dynamics of the solar wind acceleration. Electrons are normally modeled with three components, the core, the halo, and the strahl. We investigate how well the fast strahl electrons in the inner heliosphere preserve the information about the coronal electron temperature at their origin. We analyzed the data obtained by two missions, Helios, spanning the distances between 65 and 215 RS, and Parker Solar Probe (PSP), reaching down to 35 RS during its first two orbits around the Sun. The electron strahl was characterized with two parameters: pitch-angle width (PAW) and the strahl parallel temperature (Ts∥). PSP observations confirm the already reported dependence of str. . .
Date: 04/2020 Publisher: The Astrophysical Journal Pages: 88 DOI: 10.3847/1538-4357/ab7b7a Available at: https://iopscience.iop.org/article/10.3847/1538-4357/ab7b7a
More Details

Authors: Bernhard Germar, Petropavlovskikh Irina, and Mayer Bernhard
Title: Retrieving vertical ozone profiles from measurements of global spectral irradiance
Abstract:

A new method is presented to determine vertical ozone profiles from measurements of spectral global (direct Sun plus upper hemisphere) irradiance in the ultraviolet. The method is similar to the widely used Umkehr technique, which inverts measurements of zenith sky radiance. The procedure was applied to measurements of a high-resolution spectroradiometer installed near the centre of the Greenland ice sheet. Retrieved profiles were validated with balloon-sonde observations and ozone profiles from the space-borne Microwave Limb Sounder (MLS). Depending on altitude, the bias between retrieval results presented in this paper and MLS observations ranges between -5 and +3 %. The magnitude of this bias is comparable, if not smaller, to values reported in the literature for the standard Dobson . . .
Date: 12/2017 Publisher: Atmospheric Measurement Techniques Pages: 4979 - 4994 DOI: 10.5194/amt-10-4979-2017 Available at: https://www.atmos-meas-tech.net/10/4979/2017/https://www.atmos-meas-tech.net/10/4979/2017/amt-10-4979-2017.pdf
More Details

Authors: Binias Cindy, Do Van Tu, Jude-Lemeilleur Florence, Plus Martin, Froidefond Jean-Marie, et al.
Title: Environmental factors contributing to the development of brown muscle disease and perkinsosis in Manila clams ( Ruditapes philippinarum ) and trematodiasis in cockles ( Cerastoderma edule ) of Arcachon Bay
Abstract: N/A
Date: 06/2014 Publisher: Marine Ecology Pages: 67 - 77 DOI: 10.1111/maec.2014.35.issue-s110.1111/maec.12087 Available at: http://doi.wiley.com/10.1111/maec.2014.35.issue-s1http://doi.wiley.com/10.1111/maec.12087https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fmaec.12087
More Details
Authors: Bourdin Philippe, Singh Nishant K., and Brandenburg Axel
Title: Magnetic Helicity Reversal in the Corona at Small Plasma Beta
Abstract:

Solar and stellar dynamos shed small-scale and large-scale magnetic helicity of opposite signs. However, solar wind observations and simulations have shown that some distance above the dynamo both the small-scale and large-scale magnetic helicities have reversed signs. With realistic simulations of the solar corona above an active region now being available, we have access to the magnetic field and current density along coronal loops. We show that a sign reversal in the horizontal averages of the magnetic helicity occurs when the local maximum of the plasma beta drops below unity and the field becomes nearly fully force free. Hence, this reversal is expected to occur well within the solar corona and would not directly be accessible to in situ measurements with the Parker Solar Probe or . . .
Date: 12/2018 Publisher: The Astrophysical Journal Pages: 2 DOI: 10.3847/1538-4357/aae97a Available at: http://stacks.iop.org/0004-637X/869/i=1/a=2?key=crossref.90fa7f41d90e2c8b57f8248c0437cc6b
More Details

Authors: Bowen Trevor A., Mallet Alfred, Huang Jia, Klein Kristopher G., Malaspina David M., et al.
Title: Ion-scale Electromagnetic Waves in the Inner Heliosphere
Abstract:

Understanding the physical processes in the solar wind and corona that actively contribute to heating, acceleration, and dissipation is a primary objective of NASA's Parker Solar Probe (PSP) mission. Observations of circularly polarized electromagnetic waves at ion scales suggest that cyclotron resonance and wave─particle interactions are dynamically relevant in the inner heliosphere. A wavelet-based statistical study of circularly polarized events in the first perihelion encounter of PSP demonstrates that transverse electromagnetic waves at ion resonant scales are observed in 30─50% of radial field intervals. Average wave amplitudes of approximately 4 nT are measured, while the mean duration of wave events is on the order of 20 s; however, long-duration wave events can exist withou. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 66 DOI: 10.3847/1538-4365/ab6c65 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/
More Details

Authors: Bowen T. A., Bale S. D., Bonnell J. W., de Wit Dudok, Goetz K., et al.
Title: A Merged Search‐Coil and Fluxgate Magnetometer Data Product for Parker Solar Probe FIELDS
Abstract:

NASA's Parker Solar Probe (PSP) mission is currently investigating the local plasma environment of the inner heliosphere (<0.25 R) using both in situ and remote sensing instrumentation. Connecting signatures of microphysical particle heating and acceleration processes to macroscale heliospheric structure requires sensitive measurements of electromagnetic fields over a large range of physical scales. The FIELDS instrument, which provides PSP with in situ measurements of electromagnetic fields of the inner heliosphere and corona, includes a set of three vector magnetometers: two fluxgate magnetometers (MAGs) and a single inductively coupled search-coil magnetometer (SCM). Together, the three FIELDS magnetometers enable measurements of the local magnetic field with a bandw. . .
Date: 05/2020 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2020JA027813 Available at: https://onlinelibrary.wiley.com/doi/abs/10.1029/2020JA027813https://onlinelibrary.wiley.com/doi/pdf/10.1029/2020JA027813
More Details

Authors: Brodu E., and Balat-Pichelin M.
Title: Emissivity of Boron Nitride and Metals for the Solar Probe Plus Mission
Abstract:
For application to the Solar Probe Plus mission (NASA), the behavior and the thermo-optical performance at very high temperatures (range 1100–2200 K) of candidate passive thermal control materials was assessed. On one hand, a pyrolytic boron nitride coating (130  μm 130  μm thick) was proved to be stable at high temperatures up to 2200 K in vacuum, as well as proved, via total and spectral emissivity measurements at high temperatures, to be able to effectively turn an initially selective solar absorber substrate (carbon/carbon composite) into a solar reflector. On the other hand, chemical vapor deposition coatings made of refractory metals with highly textured surfaces were proved to be able to significantly reduce the temperature of a metall. . .
Date: 11/2016 Publisher: Journal of Spacecraft and Rockets Pages: 1119 - 1127 DOI: 10.2514/1.A33453 Available at: https://arc.aiaa.org/doi/10.2514/1.A33453https://arc.aiaa.org/doi/pdf/10.2514/1.A33453
More Details
Authors: Brucker G. J., Herbert J., Stewart R., and Plus D.
Title: Sapphire Photocurrent Sources and Their Impact on RAM Upset
Abstract:

This paper reports on the transient photocurrent measurements made with test structures fabricated on sapphire substrates, and the computer simulation model which was developed to use the test results. Predictions of logic upset for a 4 K RAM CMOS/SOS compared with measured upset rates showed agreement within a factor of 2. The test structure results indicate that the sapphire photoconductance is 6.3 x 10 to the -19th mhos/(rads/s)-micron. The use of this value in the present simulation model will increase the predicted upset rate, and thus, increase the disagreement by more than a factor of two.


Date: 12/1986 Publisher: IEEE Transactions on Nuclear Science Pages: 1377 - 1380 DOI: 10.1109/TNS.1986.4334608 Available at: http://ieeexplore.ieee.org/document/4334608/http://xplorestaging.ieee.org/ielx5/23/4334557/04334608.pdf?arnumber=4334608
More Details
C
Authors: Case A. W., Kasper Justin C., Stevens Michael L., Korreck Kelly E., Paulson Kristoff, et al.
Title: The Solar Probe Cup on the Parker Solar Probe
Abstract:

Solar Probe Cup (SPC) is a Faraday cup instrument on board NASA's Parker Solar Probe (PSP) spacecraft designed to make rapid measurements of thermal coronal and solar wind plasma. The spacecraft is in a heliocentric orbit that takes it closer to the Sun than any previous spacecraft, allowing measurements to be made where the coronal and solar wind plasma is being heated and accelerated. The SPC instrument was designed to be pointed directly at the Sun at all times, allowing the solar wind (which is flowing primarily radially away from the Sun) to be measured throughout the orbit. The instrument is capable of measuring solar wind ions with an energy between 100 and 6000 V (protons with speeds from 139 to 1072 km s−1). It also measures electrons with an energy/charge between . . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 43 DOI: 10.3847/1538-4365/ab5a7b Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab5a7b
More Details

Pages