Found 71 results
Author Title Type [ Year(Asc)]
Filters: Keyword is Solar wind  [Clear All Filters]
2020
Authors: Good S. W., Kilpua E. K. J., Ala-Lahti M., Osmane A., Bale S. D., et al.
Title: Cross Helicity of the 2018 November Magnetic Cloud Observed by the Parker Solar Probe
Abstract:

Magnetic clouds are large-scale transient structures in the solar wind with low plasma-beta, low-amplitude magnetic field fluctuations, and twisted field lines with both ends often connected to the Sun. Their inertial-range turbulent properties have not been examined in detail. In this Letter, we analyze the normalized cross helicity, sigma(c), and residual energy, sigma(r), of plasma fluctuations in the 2018 November magnetic cloud observed at 0.25.au by the Parker Solar Probe. A low value of |sigma(c)| was present in the cloud core, indicating that wave power parallel and antiparallel to the mean field was approximately balanced, while the cloud's outer layers displayed larger amplitude Alfvenic fluctuations with high |sigma(c)| values and sigma(r) similar to 0. These properties are d. . .
Date: 09/2020 Publisher: The Astrophysical Journal Pages: L32 DOI: 10.3847/2041-8213/abb021 Available at: https://iopscience.iop.org/article/10.3847/2041-8213/abb021https://iopscience.iop.org/article/10.3847/2041-8213/abb021/pdf
More Details

Authors: Lapenta Giovanni, Zhukov Andrei, and van Driel-Gesztelyi Lidia
Title: Editorial: Solar Wind at the Dawn of the Parker Solar Probe and Solar Orbiter Era
Abstract:

Solar Wind 15 brought together almost 250 experts from all continents of the world to discuss the current trends and future perspectives of the research on the Sun and its solar wind. The present article collection recaptures some of the highlights of their contributions.


Date: 07/2020 Publisher: Solar Physics DOI: 10.1007/s11207-020-01670-8 Available at: http://link.springer.com/10.1007/s11207-020-01670-8http://link.springer.com/content/pdf/10.1007/s11207-020-01670-8.pdf
More Details
Authors: Bowen Trevor A., Bale Stuart D., Bonnell J. W., Larson Davin, Mallet Alfred, et al.
Title: The Electromagnetic Signature of Outward Propagating Ion-scale Waves
Abstract:

First results from the Parker Solar Probe (PSP) mission have revealed ubiquitous coherent ion-scale waves in the inner heliosphere, which are signatures of kinetic wave-particle interactions and fluid instabilities. However, initial studies of the circularly polarized ion-scale waves observed by PSP have only thoroughly analyzed magnetic field signatures, precluding a determination of solar wind frame propagation direction and intrinsic wave polarization. A comprehensive determination of wave properties requires measurements of both electric and magnetic fields. Here, we use full capabilities of the PSP/FIELDS instrument suite to measure both the electric and magnetic components of circularly polarized waves. Comparing spacecraft frame magnetic field measurements with the Doppler-shifte. . .
Date: 08/2020 Publisher: The Astrophysical Journal Pages: 74 DOI: 10.3847/1538-4357/ab9f37 Available at: https://iopscience.iop.org/article/10.3847/1538-4357/ab9f37https://iopscience.iop.org/article/10.3847/1538-4357/ab9f37/
More Details

Authors: Macneil Allan R, Owens Mathew J, Wicks Robert T, Lockwood Mike, Bentley Sarah N, et al.
Title: The evolution of inverted magnetic fields through the inner heliosphereABSTRACT
Abstract:

Local inversions are often observed in the heliospheric magnetic field (HMF), but their origins and evolution are not yet fully understood. Parker Solar Probe has recently observed rapid, Alfvénic, HMF inversions in the inner heliosphere, known as ’switchbacks’, which have been interpreted as the possible remnants of coronal jets. It has also been suggested that inverted HMF may be produced by near-Sun interchange reconnection; a key process in mechanisms proposed for slow solar wind release. These cases suggest that the source of inverted HMF is near the Sun, and it follows that these inversions would gradually decay and straighten as they propagate out through the heliosphere. Alternatively, HMF inversions could form during solar wind transit, through phenomena such velocity shea. . .
Date: 04-2020 Publisher: Monthly Notices of the Royal Astronomical Society Pages: 3642 - 3655 DOI: 10.1093/mnras/staa951 Available at: https://academic.oup.com/mnras/article/494/3/3642/5819029
More Details

Authors: Perrone D., D’Amicis R., De Marco R., Matteini L., Stansby D., et al.
Title: Highly Alfvénic slow solar wind at 0.3 au during a solar minimum: Helios insights for Parker Solar Probe and Solar Orbiter
Abstract:

Alfvénic fluctuations in solar wind are an intrinsic property of fast streams, while slow intervals typically have a very low degree of Alfvénicity, with much more variable parameters. However, sometimes a slow wind can be highly Alfvénic. Here we compare three different regimes of solar wind, in terms of Alfvénic content and spectral properties, during a minimum phase of the solar activity and at 0.3 au. We show that fast and Alfvénic slow intervals share some common characteristics. This would suggest a similar solar origin, with the latter coming from over-expanded magnetic field lines, in agreement with observations at 1 au and at the maximum of the solar cycle. Due to the Alfvénic nature of the fluctuations in both fast and Alfvénic slow winds, we observe a well-defined corr. . .
Date: 01/2020 Publisher: Astronomy & Astrophysics Pages: A166 DOI: 10.1051/0004-6361/201937064 Available at: https://www.aanda.org/10.1051/0004-6361/201937064https://www.aanda.org/10.1051/0004-6361/201937064/pdf
More Details

Authors: Mozer F. S., Bonnell J. W., Bowen T. A., Schumm G., and Vasko I. Y.
Title: Large-amplitude, Wideband, Doppler-shifted, Ion Acoustic Waves Observed on the Parker Solar Probe
Abstract:

Electric field spectra measured on the Parker Solar Probe typically contain upwards of 1000 large-amplitude (similar to 15 mV m(-1)), wideband (similar to 100-15,000 Hz), few-second-duration, electric field waveforms per day. The satellite also collected about 85 three-second bursts of electric field waveforms per day at a data rate of similar to 150,000 samples per second. Eight such bursts caught these waves, all of which were located in switchbacks of the magnetic field. A wave burst on 2019 September 7, when the spacecraft was at an altitude of 55 solar radii, is described. It contained Doppler-shifted ion acoustic waves that propagated in the direction opposite to the local magnetic field at all rest-frame frequencies from 60 Hz to nearly the proton pl. . .
Date: 10/2020 Publisher: The Astrophysical Journal Pages: 107 DOI: 10.3847/1538-4357/abafb4 Available at: https://iopscience.iop.org/article/10.3847/1538-4357/abafb4https://iopscience.iop.org/article/10.3847/1538-4357/abafb4/pdf
More Details

Authors: Farrell W. M., MacDowall R. J., Gruesbeck J. R., Bale S. D., and Kasper J. C.
Title: Magnetic Field Dropouts at Near-Sun Switchback Boundaries: A Superposed Epoch Analysis
Abstract:

During Parker Solar Probe's first close encounter with the Sun in early 2018 November, a large number of impulsive rotations in the magnetic field were detected within 50 Rs; these also occurred in association with short-lived impulsive solar wind bursts in speed. These impulsive features are now called "switchback" events. We examined a set of these switchbacks where the boundary transition into and out of the switchback was abrupt, with fast B rotations and simultaneous solar wind speed changes occurring on timescales of less than ∼10 s; these thus appear as step function-like changes in the radial component of B and V. Our objective was to search for any diamagnetic effects that might occur especially if the boundaries are associated with quick changes in density (i.e., . . .
Date: 08/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 28 DOI: 10.3847/1538-4365/ab9eba Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab9ebahttps://iopscience.iop.org/article/10.3847/1538-4365/ab9eba/
More Details

Authors: Verniero J. L., Larson D. E., Livi R., Rahmati A., McManus M. D., et al.
Title: Parker Solar Probe Observations of Proton Beams Simultaneous with Ion-scale Waves
Abstract:

Parker Solar Probe (PSP), NASA’s latest and closest mission to the Sun, is on a journey to investigate fundamental enigmas of the inner heliosphere. This paper reports initial observations made by the Solar Probe Analyzer for Ions (SPAN-I), one of the instruments in the Solar Wind Electrons Alphas and Protons instrument suite. We address the presence of secondary proton beams in concert with ion-scale waves observed by FIELDS, the electromagnetic fields instrument suite. We show two events from PSP’s second orbit that demonstrate signatures consistent with wave-particle interactions. We showcase 3D velocity distribution functions (VDFs) measured by SPAN-I during times of strong wave power at ion scales. From an initial instability analysis, we infer that the VDFs departed far enough. . .
Date: 05/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 5 DOI: 10.3847/1538-4365/ab86af Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab86afhttps
More Details

Authors: Nicolaou Georgios, Livadiotis George, Wicks Robert T., Verscharen Daniel, and Maruca Bennett A.
Title: Polytropic Behavior of Solar Wind Protons Observed by Parker Solar Probe
Abstract:

A polytropic process describes the transition of a fluid from one state to another through a specific relationship between the fluid density and temperature. The value of the polytropic index that governs this relationship determines the heat transfer and the effective degrees of freedom during a specific process. In this study, we analyze solar wind proton plasma measurements, obtained by the Faraday cup instrument on board the Parker Solar Probe. We examine the large-scale variations of the proton plasma density and temperature within the inner heliosphere explored by the spacecraft. We then address the polytropic behavior in the density and temperature fluctuations in short time intervals, which we analyze in order to derive the effective polytropic index of . . .
Date: 09/2020 Publisher: The Astrophysical Journal Pages: 26 DOI: 10.3847/1538-4357/abaaae Available at: https://iopscience.iop.org/article/10.3847/1538-4357/abaaaehttps://iopscience.iop.org/article/10.3847/1538-4357/abaaae/pdf
More Details

Authors: Alberti Tommaso, Laurenza Monica, Consolini Giuseppe, Milillo Anna, Marcucci Maria Federica, et al.
Title: On the Scaling Properties of Magnetic-field Fluctuations through the Inner Heliosphere
Abstract:

Although the interplanetary magnetic-field variability has been extensively investigated in situ using data from several space missions, newly launched missions providing high-resolution measures and approaching the Sun offer the possibility to study the multiscale variability in the innermost solar system. Here, using Parker Solar Probe measurements, we investigate the scaling properties of solar wind magnetic-field fluctuations at different heliocentric distances. The results show a clear transition at distances close to say 0.4 au. Closer to the Sun fluctuations show af(-3/2)frequency power spectra and regular scaling properties, while for distances larger than 0.4 au fluctuations show a Kolmogorov spectrumf(-5/3)and are characterized by anomal. . .
Date: 10/2020 Publisher: The Astrophysical Journal Pages: 84 DOI: 10.3847/1538-4357/abb3d2 Available at: https://iopscience.iop.org/article/10.3847/1538-4357/abb3d2https://iopscience.iop.org/article/10.3847/1538-4357/abb3d2/pdf
More Details

Authors: Whittlesey Phyllis L., Larson Davin E., Kasper Justin C., Halekas Jasper, Abatcha Mamuda, et al.
Title: The Solar Probe ANalyzers—Electrons on the Parker Solar Probe
Abstract:

Electrostatic analyzers of different designs have been used since the earliest days of the space age, beginning with the very earliest solar-wind measurements made by Mariner 2 en route to Venus in 1962. The Parker Solar Probe (PSP) mission, NASA’s first dedicated mission to study the innermost reaches of the heliosphere, makes its thermal plasma measurements using a suite of instruments called the Solar Wind Electrons, Alphas, and Protons (SWEAP) investigation. SWEAP’s electron PSP Analyzer (Solar Probe ANalyzer-Electron (SPAN-E)) instruments are a pair of top-hat electrostatic analyzers on PSP that are capable of measuring the electron distribution function in the solar wind from 2 eV to 30 keV. For the first time, in situ measurements of thermal electrons provided by SPAN-E will . . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 74 DOI: 10.3847/1538-4365/ab7370 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab7370https://iopscience.iop.org/article/10.3847/1538-4365/ab7370/pdf
More Details

Authors: Finley Adam J., Matt Sean P., Réville Victor, Pinto Rui F., Owens Mathew, et al.
Title: The Solar Wind Angular Momentum Flux as Observed by Parker Solar Probe
Abstract:

he long-term evolution of the Sun's rotation period cannot be directly observed, and is instead inferred from trends in the measured rotation periods of other Sun-like stars. Assuming the Sun spins down as it ages, following rotation rate proportional to age(-1/2), requires the current solar angular momentum (AM) loss rate to be around 6 x 10(30)erg. Magnetohydrodynamic models, and previous observations of the solar wind (from the Helios and Wind spacecraft), generally predict a values closer to 1 x 10(30)erg or 3 x 10(30)erg, respectively. Recently, the Parker Solar Probe (PSP) observed tangential solar wind speeds as high as similar to 50 km s(-1)in a localized region of the inner heliosphere. If such rotational flows were prevalent th. . .
Date: 10/2020 Publisher: The Astrophysical Journal Pages: L4 DOI: 10.3847/2041-8213/abb9a5 Available at: https://iopscience.iop.org/article/10.3847/2041-8213/abb9a5https://iopscience.iop.org/article/10.3847/2041-8213/abb9a5/pdf
More Details

Authors: Zhao L.-L., Zank G. P., Adhikari L., Nakanotani M., Telloni D., et al.
Title: Spectral Features in Field-aligned Solar Wind Turbulence from Parker Solar Probe Observations
Abstract:

Parker Solar Probe (PSP) observed a large variety of Alfvénic fluctuations in the fast and slow solar wind flow during its two perihelia. The properties of Alfvénic solar wind turbulence have been studied for decades in the near-Earth environment. A spectral index of -5/3 or -2 for magnetic field fluctuations has been observed using spacecraft measurements, which can be explained by turbulence theories of nearly incompressible magnetohydrodynamics (NI MHD) or critical balance. In this study, a rigorous search of field-aligned solar wind is applied to PSP measurements for the first time, which yields two events in the apparently slow solar wind. The parallel spectra of the magnetic fluctuations in the inertial range show a k −5/3 ∥  k∥−5/3 power law. . .
Date: 08/2020 Publisher: The Astrophysical Journal Pages: 113 DOI: 10.3847/1538-4357/ab9b7e Available at: https://iopscience.iop.org/article/10.3847/1538-4357/ab9b7e
More Details

Authors: Réville Victor, Velli Marco, Rouillard Alexis P., Lavraud Benoit, Tenerani Anna, et al.
Title: Tearing Instability and Periodic Density Perturbations in the Slow Solar Wind
Abstract:

In contrast with the fast solar wind, which originates in coronal holes, the source of the slow solar wind is still debated. Often intermittent and enriched with low first ionization potential elements—akin to what is observed in closed coronal loops—the slow wind could form in bursty events nearby helmet streamers. Slow winds also exhibit density perturbations that have been shown to be periodic and could be associated with flux ropes ejected from the tip of helmet streamers, as shown recently by the WISPR white-light imager on board Parker Solar Probe (PSP). In this work, we propose that the main mechanism controlling the release of flux ropes is a flow-modified tearing mode at the heliospheric current sheet (HCS). We use magnetohydrodynamic simulations of the solar wind and coron. . .
Date: 05/2020 Publisher: The Astrophysical Journal Pages: L20 DOI: 10.3847/2041-8213/ab911d Available at: https://iopscience.iop.org/article/10.3847/2041-8213/ab911d
More Details

Authors: Velli M., Harra L. K., Vourlidas A., Schwadron N., Panasenco O., et al.
Title: Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories
Abstract:

Context. The launch of Parker Solar Probe (PSP) in 2018, followed by Solar Orbiter (SO) in February 2020, has opened a new window in the exploration of solar magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to solar observations, such as the Solar Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-wavelength observations including the DKIST observatory that has just seen first light, promise to revolutionize our understanding of the solar atmosphere and of solar activity, from the generation and emergence of the Sun's magnetic field to the creation of the&. . .
Date: 09/2020 Publisher: Astronomy & Astrophysics Pages: A4 DOI: 10.1051/0004-6361/202038245 Available at: https://www.aanda.org/10.1051/0004-6361/202038245https://www.aanda.org/10.1051/0004-6361/202038245/pdf
More Details

2019
Authors: Chhiber Rohit, Usmanov Arcadi V., Matthaeus William H., and Goldstein Melvyn L.
Title: Contextual Predictions for the Parker Solar Probe . I. Critical Surfaces and Regions
Abstract:

The solar corona and young solar wind may be characterized by critical surfaces—the sonic, Alfvén, and first plasma-β unity surfaces—that demarcate regions where the solar wind flow undergoes certain crucial transformations. Global numerical simulations and remote sensing observations offer a natural mode for the study of these surfaces at large scales, thus providing valuable context for the high-resolution in situ measurements expected from the recently launched Parker Solar Probe (PSP). The present study utilizes global three-dimensional magnetohydrodynamic (MHD) simulations of the solar wind to characterize the critical surfaces and investigate the flow in propinquitous regions. Effects of solar activity are incorporated by varying source magnetic dipole tilts and employing ma. . .
Date: 03/2019 Publisher: The Astrophysical Journal Supplement Series Pages: 11 DOI: 10.3847/1538-4365/ab0652 Available at: http://stacks.iop.org/0067-0049/241/i=1/a=11?key=crossref.5e73dbbb501083f4d606cdf21e74f766http://stacks.iop.org/0067-0049/241/i=1/a=11/
More Details

Authors: Wilson Lynn B., Chen Li-Jen, Wang Shan, Schwartz Steven J., Turner Drew L., et al.
Title: Electron Energy Partition across Interplanetary Shocks. II. Statistics
Abstract:

A statistical analysis of 15,210 electron velocity distribution function (VDF) fits, observed within ±2 hr of 52 interplanetary (IP) shocks by the Wind spacecraft near 1 au, is presented. This is the second in a three-part series on electron VDFs near IP shocks. The electron velocity moment statistics for the dense, low-energy core, tenuous, hot halo, and field-aligned beam/strahl are a statistically significant list of values illustrated with both histograms and tabular lists for reference and baselines in future work. Given the large statistics in this investigation, the beam/strahl fit results in the upstream are now the most comprehensive attempt to parameterize the beam/strahl electron velocity moments in the ambient solar wind. The median density, temperature, beta, and temperatu. . .
Date: 12/2019 Publisher: The Astrophysical Journal Supplement Series Pages: 24 DOI: 10.3847/1538-4365/ab5445 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab5445
More Details

Authors: Telloni Daniele, Giordano Silvio, and Antonucci Ester
Title: On the Fast Solar Wind Heating and Acceleration Processes: A Statistical Study Based on the UVCS Survey Data
Abstract:

The UltraViolet Coronagraph Spectrometer (UVCS) on board the SOlar and Heliospheric Observatory has almost continuously observed, throughout the whole solar cycle 23, the UV solar corona. This work addresses the first-ever statistical analysis of the daily UVCS observations, performed in the O VI channel, of the northern polar coronal hole, between 1.5 and 3 R , during the period of low solar activity from 1996 April to 1997 December. The study is based on the investigation, at different heights, of the correlation between the variance of the O VI 1031.92 Å spectral line and the O VI 1031.92, 1037.61 Å doublet intensity ratio, which are proxies of the kinetic temperature of the O5+ ions and of the speed of the oxygen component of the fast solar wind, respectiv. . .
Date: 08/2019 Publisher: The Astrophysical Journal Pages: L36 DOI: 10.3847/2041-8213/ab3731 Available at: https://iopscience.iop.org/article/10.3847/2041-8213/ab3731
More Details

Authors: Telloni Daniele, Giordano Silvio, and Antonucci Ester
Title: On the Fast Solar Wind Heating and Acceleration Processes: A Statistical Study Based on the UVCS Survey Data
Abstract:

The UltraViolet Coronagraph Spectrometer (UVCS) on board the SOlar and Heliospheric Observatory has almost continuously observed, throughout the whole solar cycle 23, the UV solar corona. This work addresses the first-ever statistical analysis of the daily UVCS observations, performed in the O VI channel, of the northern polar coronal hole, between 1.5 and 3 R , during the period of low solar activity from 1996 April to 1997 December. The study is based on the investigation, at different heights, of the correlation between the variance of the O VI 1031.92 Å spectral line and the O VI 1031.92, 1037.61 Å doublet intensity ratio, which are proxies of the kinetic temperature of the O5+ ions and of the speed of the oxygen component of the fast solar wind, respectiv. . .
Date: 08/2019 Publisher: The Astrophysical Journal Pages: L36 DOI: 10.3847/2041-8213/ab3731 Available at: https://iopscience.iop.org/article/10.3847/2041-8213/ab3731
More Details

Authors: Scudder J. D.
Title: The Long-standing Closure Crisis in Coronal Plasmas
Abstract:

Coronal and solar wind physics have long used plasma fluid models to motivate physical explanations of observations; the hypothesized model is introduced into a fluid simulation to see if observations are reproduced. This procedure is called Verification of Mechanism (VoM) modeling; it is contingent on the self consistency of the closure that made the simulation possible. Inner corona VoMs typically assume weak gradient Spitzer─Braginskii closures. Four prominent coronal VoMs in place for decades are shown to contradict their closure hypotheses, demonstrably shaping coronal and solar wind research. These findings have been possible since 1953. This unchallenged evolution is worth understanding, so that similarly flawed VoMs do not continue to mislead new research. As a first step in t. . .
Date: 11/2019 Publisher: The Astrophysical Journal Pages: 148 DOI: 10.3847/1538-4357/ab48e0 Available at: https://iopscience.iop.org/article/10.3847/1538-4357/ab48e0
More Details

Authors: Chang Qing, Xu Xiaojun, Xu Qi, Zhong Jun, Xu Jiaying, et al.
Title: Multiple-point Modeling the Parker Spiral Configuration of the Solar Wind Magnetic Field at the Solar Maximum of Solar Cycle 24
Abstract:

By assuming that the solar wind flow is spherically symmetric and that the flow speed becomes constant beyond some critical distance r = R 0 (neglecting solar gravitation and acceleration by high coronal temperature), the large-scale solar wind magnetic field lines are distorted into a Parker spiral configuration, which is usually simplified to an Archimedes spiral. Using magnetic field observations near Mercury, Venus, and Earth during solar maximum of Solar Cycle 24, we statistically surveyed the Parker spiral angles and obtained the empirical equations of the Archimedes and Parker spirals by fitting the multiple-point results. We found that the solar wind magnetic field configurations are slightly different during different years. Archimedes and Parker spiral configuration. . .
Date: 10/2019 Publisher: The Astrophysical Journal Pages: 102 DOI: 10.3847/1538-4357/ab412a Available at: https://iopscience.iop.org/article/10.3847/1538-4357/ab412
More Details

Authors: Riley Pete, Downs Cooper, Linker Jon A., Mikic Zoran, Lionello Roberto, et al.
Title: Predicting the Structure of the Solar Corona and Inner Heliosphere during Parker Solar Probe ’s First Perihelion Pass
Abstract:

NASA’s Parker Solar Probe (PSP) spacecraft reached its first perihelion of 35.7 solar radii on 2018 November 5. To aid in mission planning, and in anticipation of the unprecedented measurements to be returned, in late October, we developed a three-dimensional magnetohydrodynamic (MHD) solution for the solar corona and inner heliosphere, driven by the then available observations of the Sun’s photospheric magnetic field. Our model incorporates a wave-turbulence-driven model to heat the corona. Here, we present our predictions for the structure of the solar corona and the likely in situ measurements that PSP will be returning over the next few months. We infer that, in the days prior to first encounter, PSP was immersed in wind emanating from a well-established, positive-polarity north. . .
Date: 04/2019 Publisher: The Astrophysical Journal Pages: L15 DOI: 10.3847/2041-8213/ab0ec3 Available at: http://stacks.iop.org/2041-8205/874/i=2/a=L15?key=crossref.94a3f13ef95cab063c2cc60115d0f410http://stacks.iop.org/2041-8205/874/i=2/a=L15/pd
More Details

Authors: Parashar T. N., Cuesta M., and Matthaeus W. H.
Title: Reynolds Number and Intermittency in the Expanding Solar Wind: Predictions Based on Voyager Observations
Abstract:

The large-scale features of the solar wind are examined in order to predict small-scale features of turbulence in unexplored regions of the heliosphere. The strategy is to examine how system size, or effective Reynolds number Re, varies, and then how this quantity influences observable statistical properties, including intermittency properties of solar wind turbulence. The expectation based on similar hydrodynamics scalings is that the kurtosis, of the small-scale magnetic field increments, will increase with increasing Re. Simple theoretical arguments as well as Voyager observations indicate that effective interplanetary turbulence Re decreases with increasing heliocentric distance. The decrease of scale-dependent magnetic increment kurtosis with increasing heliocentric distance is ver. . .
Date: 10/2019 Publisher: The Astrophysical Journal Pages: L57 DOI: 10.3847/2041-8213/ab4a82 Available at: https://iopscience.iop.org/article/10.3847/2041-8213/ab4a82
More Details

Authors: Parashar T. N., Cuesta M., and Matthaeus W. H.
Title: Reynolds Number and Intermittency in the Expanding Solar Wind: Predictions Based on Voyager Observations
Abstract:

The large-scale features of the solar wind are examined in order to predict small-scale features of turbulence in unexplored regions of the heliosphere. The strategy is to examine how system size, or effective Reynolds number Re, varies, and then how this quantity influences observable statistical properties, including intermittency properties of solar wind turbulence. The expectation based on similar hydrodynamics scalings is that the kurtosis, of the small-scale magnetic field increments, will increase with increasing Re. Simple theoretical arguments as well as Voyager observations indicate that effective interplanetary turbulence Re decreases with increasing heliocentric distance. The decrease of scale-dependent magnetic increment kurtosis with increasing heliocentric distance is ver. . .
Date: 10/2019 Publisher: The Astrophysical Journal Pages: L57 DOI: 10.3847/2041-8213/ab4a82 Available at: https://iopscience.iop.org/article/10.3847/2041-8213/ab4a82
More Details

Authors: Verscharen Daniel, Chandran Benjamin D. G., Jeong Seong-Yeop, Salem Chadi S., Pulupa Marc P., et al.
Title: Self-induced Scattering of Strahl Electrons in the Solar Wind
Abstract:

We investigate the scattering of strahl electrons by microinstabilities as a mechanism for creating the electron halo in the solar wind. We develop a mathematical framework for the description of electron-driven microinstabilities and discuss the associated physical mechanisms. We find that an instability of the oblique fast-magnetosonic/whistler (FM/W) mode is the best candidate for a microinstability that scatters strahl electrons into the halo. We derive approximate analytic expressions for the FM/W instability threshold in two different β c regimes, where β c is the ratio of the core electrons’ thermal pressure to the magnetic pressure, and confirm the accuracy of these thresholds through comparison with numerical solutions to the hot-plasma dispersion rela. . .
Date: 12/2019 Publisher: The Astrophysical Journal Pages: 136 DOI: 10.3847/1538-4357/ab4c30 Available at: https://iopscience.iop.org/article/10.3847/1538-4357/ab4c30https://iopscience.iop.org/article/10.3847/1538-4357/ab4c30/
More Details

Pages