Found 8 results
Author Title Type [ Year(Asc)]
Filters: Author is Whittlesey, P. L.  [Clear All Filters]
2020
Authors: Maksimovic M., Bale S. D., Berčič L., Bonnell J. W., Case A. W., et al.
Title: Anticorrelation between the Bulk Speed and the Electron Temperature in the Pristine Solar Wind: First Results from the Parker Solar Probe and Comparison with Helios
Abstract:

We discuss the solar wind electron temperatures Te as measured in the nascent solar wind by Parker Solar Probe during its first perihelion pass. The measurements have been obtained by fitting the high-frequency part of quasi-thermal noise spectra recorded by the Radio Frequency Spectrometer. In addition we compare these measurements with those obtained by the electrostatic analyzer discussed in Halekas et al. These first electron observations show an anticorrelation between Te and the wind bulk speed V: this anticorrelation is most likely the remnant of the well-known mapping observed at 1 au and beyond between the fast wind and its coronal hole sources, where electrons are observed to be cooler than in the quiet corona. We also revisit Helios electron temperature . . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 62 DOI: 10.3847/1538-4365/ab61fc Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab61fch
More Details

Authors: Lavraud B., Fargette N., Réville V., Szabo A., Huang J., et al.
Title: The Heliospheric Current Sheet and Plasma Sheet during Parker Solar Probe’s First Orbit
Abstract:

We present heliospheric current sheet (HCS) and plasma sheet (HPS) observations during Parker Solar Probe’s (PSP) first orbit around the Sun. We focus on the eight intervals that display a true sector boundary (TSB; based on suprathermal electron pitch angle distributions) with one or several associated current sheets. The analysis shows that (1) the main density enhancements in the vicinity of the TSB and HCS are typically associated with electron strahl dropouts, implying magnetic disconnection from the Sun, (2) the density enhancements are just about twice that in the surrounding regions, suggesting mixing of plasmas from each side of the HCS, (3) the velocity changes at the main boundaries are either correlated or anticorrelated with magnetic field changes, consistent with magneti. . .
Date: 05/2020 Publisher: The Astrophysical Journal Pages: L19 DOI: 10.3847/2041-8213/ab8d2d Available at: https://iopscience.iop.org/article/10.3847/2041-8213/ab8d2d
More Details

Authors: Verniero J. L., Larson D. E., Livi R., Rahmati A., McManus M. D., et al.
Title: Parker Solar Probe Observations of Proton Beams Simultaneous with Ion-scale Waves
Abstract:

Parker Solar Probe (PSP), NASA’s latest and closest mission to the Sun, is on a journey to investigate fundamental enigmas of the inner heliosphere. This paper reports initial observations made by the Solar Probe Analyzer for Ions (SPAN-I), one of the instruments in the Solar Wind Electrons Alphas and Protons instrument suite. We address the presence of secondary proton beams in concert with ion-scale waves observed by FIELDS, the electromagnetic fields instrument suite. We show two events from PSP’s second orbit that demonstrate signatures consistent with wave-particle interactions. We showcase 3D velocity distribution functions (VDFs) measured by SPAN-I during times of strong wave power at ion scales. From an initial instability analysis, we infer that the VDFs departed far enough. . .
Date: 05/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 5 DOI: 10.3847/1538-4365/ab86af Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab86afhttps
More Details

Authors: Giacalone J., Mitchell D. G., Allen R. C., Hill M. E., McNutt R. L., et al.
Title: Solar Energetic Particles Produced by a Slow Coronal Mass Ejection at \~0.25 au
Abstract:

We present an analysis of Parker Solar Probe (PSP) IS☉IS observations of ̃30-300 keV n-1 ions on 2018 November 11 when PSP was about 0.25 au from the Sun. Five hours before the onset of a solar energetic particle (SEP) event, a coronal mass ejection (CME) was observed by STEREO-A/COR2, which crossed PSP about a day later. No shock was observed locally at PSP, but the CME may have driven a weak shock earlier. The SEP event was dispersive, with higher energy ions arriving before the lower energy ones. Timing suggests the particles originated at the CME when it was at ̃7.4R. SEP intensities increased gradually from their onset over a few hours, reaching a peak, and then decreased gradually before the CME arrived at PSP. The event was weak, having a very soft en. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 29 DOI: 10.3847/1538-4365/ab5221 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab5221
More Details

Authors: Allen R. C., Lario D., Odstrcil D., Ho G. C., Jian L. K., et al.
Title: Solar Wind Streams and Stream Interaction Regions Observed by the Parker Solar Probe with Corresponding Observations at 1 au
Abstract:

Several fast solar wind streams and stream interaction regions (SIRs) were observed by the Parker Solar Probe (PSP) during its first orbit (2018 September-2019 January). During this time, several recurring SIRs were also seen at 1 au at both L1 (Advanced Composition Explorer (ACE) and Wind) and the location of the Solar Terrestrial Relations Observatory-Ahead (STEREO-A). In this paper, we compare four fast streams observed by PSP at different radial distances during its first orbit. For three of these fast stream events, measurements from L1 (ACE and Wind) and STEREO-A indicated that the fast streams were observed by both PSP and at least one of the 1 au monitors. Our associations are supported by simulations made by the ENLIL model driven by GONG-(ADAPT-)WSA, which allows us to context. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 36 DOI: 10.3847/1538-4365/ab578f Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab578f
More Details

Authors: Lario D., Balmaceda L., Alzate N., Mays M. L., Richardson I. G., et al.
Title: The Streamer Blowout Origin of a Flux Rope and Energetic Particle Event Observed by Parker Solar Probe at 0.5 au
Abstract:

The distribution of spacecraft in the inner heliosphere during 2019 March enabled comprehensive observations of an interplanetary coronal mass ejection (ICME) that encountered Parker Solar Probe (PSP) at 0.547 au from the Sun. This ICME originated as a slow (∼311 km s-1) streamer blowout (SBO) on the Sun as measured by the white-light coronagraphs on board the Solar TErrestrial RElations Observatory-A and the Solar and Heliospheric Observatory. Despite its low initial speed, the passage of the ICME at PSP was preceded by an anisotropic, energetic (≲100 keV/n) ion enhancement and by two interplanetary shocks. The ICME was embedded between slow (∼300 km s-1) solar wind and a following, relatively high-speed (∼500 km s-1), stream that most likely wa. . .
Date: 07/2020 Publisher: The Astrophysical Journal Pages: 134 DOI: 10.3847/1538-4357/ab9942 Available at: https://iopscience.iop.org/article/10.3847/1538-4357/ab9942https://iopscience.iop.org/article/10.3847/1538-4357/ab9942/
More Details

Authors: Lario D., Balmaceda L., Alzate N., Mays M. L., Richardson I. G., et al.
Title: The Streamer Blowout Origin of a Flux Rope and Energetic Particle Event Observed by Parker Solar Probe at 0.5 au
Abstract:

The distribution of spacecraft in the inner heliosphere during 2019 March enabled comprehensive observations of an interplanetary coronal mass ejection (ICME) that encountered Parker Solar Probe (PSP) at 0.547 au from the Sun. This ICME originated as a slow (\~311 km s-1) streamer blowout (SBO) on the Sun as measured by the white-light coronagraphs on board the Solar TErrestrial RElations Observatory-A and the Solar and Heliospheric Observatory. Despite its low initial speed, the passage of the ICME at PSP was preceded by an anisotropic, energetic (≲100 keV/n) ion enhancement and by two interplanetary shocks. The ICME was embedded between slow (\~300 km s-1) solar wind and a following, relatively high-speed (\~500 km s-1), stream that most likely was r. . .
Date: 07/2020 Publisher: The Astrophysical Journal Pages: 134 DOI: 10.3847/1538-4357/ab9942 Available at: https://iopscience.iop.org/article/10.3847/1538-4357/ab9942https://iopscience.iop.org/article/10.3847/1538-4357/ab9942/
More Details

Authors: Agapitov O. V., de Wit Dudok, Mozer F. S., Bonnell J. W., Drake J. F., et al.
Title: Sunward-propagating Whistler Waves Collocated with Localized Magnetic Field Holes in the Solar Wind: Parker Solar Probe Observations at 35.7 R Radii
Abstract:

Observations by the Parker Solar Probe mission of the solar wind at \~35.7 solar radii reveal the existence of whistler wave packets with frequencies below 0.1 fce (20-80 Hz in the spacecraft frame). These waves often coincide with local minima of the magnetic field magnitude or with sudden deflections of the magnetic field that are called switchbacks. Their sunward propagation leads to a significant Doppler frequency downshift from 200-300 to 20-80 Hz (from 0.2 to 0.5 fce). The polarization of these waves varies from quasi-parallel to significantly oblique with wave normal angles that are close to the resonance cone. Their peak amplitude can be as large as 2-4 nT. Such values represent approximately 10% of the background magnetic field, which is considerably more . . .
Date: 03/2020 Publisher: The Astrophysical Journal Pages: L20 DOI: 10.3847/2041-8213/ab799c Available at: https://iopscience.iop.org/article/10.3847/2041-8213/ab799c
More Details