Found 10 results
Author Title Type [ Year(Asc)]
Filters: Author is Lavraud, Benoit  [Clear All Filters]
2020
Authors: Nieves-Chinchilla Teresa, Szabo Adam, Korreck Kelly E., Alzate Nathalia, Balmaceda Laura A., et al.
Title: Analysis of the Internal Structure of the Streamer Blowout Observed by the Parker Solar Probe During the First Solar Encounter
Abstract:

In this paper, we present an analysis of the internal structure of a coronal mass ejection (CME) detected by in situ instruments on board the Parker Solar Probe (PSP) spacecraft during its first solar encounter. On 2018 November 11 at 23:53 UT, the FIELDS magnetometer measured an increase in strength of the magnetic field as well as a coherent change in the field direction. The SWEAP instrument simultaneously detected a low proton temperature and signatures of bidirectionality in the electron pitch angle distribution (PAD). These signatures are indicative of a CME embedded in the slow solar wind. Operating in conjunction with PSP was the STEREO A spacecraft, which enabled the remote observation of a streamer blowout by the SECCHI suite of instruments. The source at the Sun of the slow a. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 63 DOI: 10.3847/1538-4365/ab61f5 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab61f5
More Details

Authors: Nieves-Chinchilla Teresa, Szabo Adam, Korreck Kelly E., Alzate Nathalia, Balmaceda Laura A., et al.
Title: Analysis of the Internal Structure of the Streamer Blowout Observed by the Parker Solar Probe During the First Solar Encounter
Abstract:

In this paper, we present an analysis of the internal structure of a coronal mass ejection (CME) detected by in situ instruments on board the Parker Solar Probe (PSP) spacecraft during its first solar encounter. On 2018 November 11 at 23:53 UT, the FIELDS magnetometer measured an increase in strength of the magnetic field as well as a coherent change in the field direction. The SWEAP instrument simultaneously detected a low proton temperature and signatures of bidirectionality in the electron pitch angle distribution (PAD). These signatures are indicative of a CME embedded in the slow solar wind. Operating in conjunction with PSP was the STEREO A spacecraft, which enabled the remote observation of a streamer blowout by the SECCHI suite of instruments. The source at the Sun of the slow a. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 63 DOI: 10.3847/1538-4365/ab61f5 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab61f5
More Details

Authors: Szabo Adam, Larson Davin, Whittlesey Phyllis, Stevens Michael L., Lavraud Benoit, et al.
Title: The Heliospheric Current Sheet in the Inner Heliosphere Observed by the Parker Solar Probe
Abstract:

The Parker Solar Probe (PSP) completed its first solar encounter in 2018 November, bringing it closer to the Sun than any previous mission. This allowed in situ investigation of the heliospheric current sheet (HCS) inside the orbit of Venus. The Parker observations reveal a well defined magnetic sector structure placing the spacecraft in a negative polarity region for most of the encounter. The observed current sheet crossings are compared to the predictions of both potential field source surface and magnetohydrodynamic models. All the model predictions are in good qualitative agreement with the observed crossings of the HCS. The models also generally agree that the HCS was nearly parallel with the solar equator during the inbound leg of the encounter and more significantly inclined dur. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 47 DOI: 10.3847/1538-4365/ab5dac Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab5dach
More Details

Authors: Szabo Adam, Larson Davin, Whittlesey Phyllis, Stevens Michael L., Lavraud Benoit, et al.
Title: The Heliospheric Current Sheet in the Inner Heliosphere Observed by the Parker Solar Probe
Abstract:

The Parker Solar Probe (PSP) completed its first solar encounter in 2018 November, bringing it closer to the Sun than any previous mission. This allowed in situ investigation of the heliospheric current sheet (HCS) inside the orbit of Venus. The Parker observations reveal a well defined magnetic sector structure placing the spacecraft in a negative polarity region for most of the encounter. The observed current sheet crossings are compared to the predictions of both potential field source surface and magnetohydrodynamic models. All the model predictions are in good qualitative agreement with the observed crossings of the HCS. The models also generally agree that the HCS was nearly parallel with the solar equator during the inbound leg of the encounter and more significantly inclined dur. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 47 DOI: 10.3847/1538-4365/ab5dac Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab5dach
More Details

Authors: Rouillard Alexis P., Kouloumvakos Athanasios, Vourlidas Angelos, Kasper Justin, Bale Stuart, et al.
Title: Relating Streamer Flows to Density and Magnetic Structures at the Parker Solar Probe
Abstract:

The physical mechanisms that produce the slow solar wind are still highly debated. Parker Solar Probe's (PSP's) second solar encounter provided a new opportunity to relate in situ measurements of the nascent slow solar wind with white-light images of streamer flows. We exploit data taken by the Solar and Heliospheric Observatory, the Solar TErrestrial RElations Observatory (STEREO), and the Wide Imager on Solar Probe to reveal for the first time a close link between imaged streamer flows and the high-density plasma measured by the Solar Wind Electrons Alphas and Protons (SWEAP) experiment. We identify different types of slow winds measured by PSP that we relate to the spacecraft's magnetic connectivity (or not) to streamer flows. SWEAP measured high-density and highly variable plasma wh. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 37 DOI: 10.3847/1538-4365/ab579a Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab579a
More Details

Authors: Rouillard Alexis P., Kouloumvakos Athanasios, Vourlidas Angelos, Kasper Justin, Bale Stuart, et al.
Title: Relating Streamer Flows to Density and Magnetic Structures at the Parker Solar Probe
Abstract:

The physical mechanisms that produce the slow solar wind are still highly debated. Parker Solar Probe’s (PSP’s) second solar encounter provided a new opportunity to relate in situ measurements of the nascent slow solar wind with white-light images of streamer flows. We exploit data taken by the Solar and Heliospheric Observatory, the Solar TErrestrial RElations Observatory (STEREO), and the Wide Imager on Solar Probe to reveal for the first time a close link between imaged streamer flows and the high-density plasma measured by the Solar Wind Electrons Alphas and Protons (SWEAP) experiment. We identify different types of slow winds measured by PSP that we relate to the spacecraft’s magnetic connectivity (or not) to streamer flows. SWEAP measured high-density and highly variable pla. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 37 DOI: 10.3847/1538-4365/ab579a Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab579a
More Details

Authors: Korreck Kelly E., Szabo Adam, Chinchilla Teresa Nieves, Lavraud Benoit, Luhmann Janet, et al.
Title: Source and Propagation of a Streamer Blowout Coronal Mass Ejection Observed by the Parker Solar Probe
Abstract:

In the first orbit of the Parker Solar Probe (PSP), in situ thermal plasma and magnetic field measurements were collected as close as 35 RSun from the Sun, an environment that had not been previously explored. During the first orbit of PSP, the spacecraft flew through a streamer blowout coronal mass ejection (SBO-CME) on 2018 November 11 at 23:50 UT as it exited the science encounter. The SBO-CME on November 11 was directed away from the Earth and was not visible by L1 or Earth-based telescopes due to this geometric configuration. However, PSP and the STEREO-A spacecraft were able to make observations of this slow (v ≈ 380 km s-1) SBO-CME. Using the PSP data, STEREO-A images, and Wang-Sheeley-Arge model, the source region of the CME is found to be a helmet stream. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 69 DOI: 10.3847/1538-4365/ab6ff9 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab6ff9
More Details

Authors: Korreck Kelly E., Szabo Adam, Chinchilla Teresa Nieves, Lavraud Benoit, Luhmann Janet, et al.
Title: Source and Propagation of a Streamer Blowout Coronal Mass Ejection Observed by the Parker Solar Probe
Abstract:

In the first orbit of the Parker Solar Probe (PSP), in situ thermal plasma and magnetic field measurements were collected as close as 35 RSun from the Sun, an environment that had not been previously explored. During the first orbit of PSP, the spacecraft flew through a streamer blowout coronal mass ejection (SBO-CME) on 2018 November 11 at 23:50 UT as it exited the science encounter. The SBO-CME on November 11 was directed away from the Earth and was not visible by L1 or Earth-based telescopes due to this geometric configuration. However, PSP and the STEREO-A spacecraft were able to make observations of this slow (v ≈ 380 km s−1) SBO-CME. Using the PSP data, STEREO-A images, and Wang─Sheeley─Arge model, the source region of the CME is found to be a helmet . . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 69 DOI: 10.3847/1538-4365/ab6ff9 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab6ff9
More Details

Authors: Réville Victor, Velli Marco, Rouillard Alexis P., Lavraud Benoit, Tenerani Anna, et al.
Title: Tearing Instability and Periodic Density Perturbations in the Slow Solar Wind
Abstract:

In contrast with the fast solar wind, which originates in coronal holes, the source of the slow solar wind is still debated. Often intermittent and enriched with low first ionization potential elements—akin to what is observed in closed coronal loops—the slow wind could form in bursty events nearby helmet streamers. Slow winds also exhibit density perturbations that have been shown to be periodic and could be associated with flux ropes ejected from the tip of helmet streamers, as shown recently by the WISPR white-light imager on board Parker Solar Probe (PSP). In this work, we propose that the main mechanism controlling the release of flux ropes is a flow-modified tearing mode at the heliospheric current sheet (HCS). We use magnetohydrodynamic simulations of the solar wind and coron. . .
Date: 05/2020 Publisher: The Astrophysical Journal Pages: L20 DOI: 10.3847/2041-8213/ab911d Available at: https://iopscience.iop.org/article/10.3847/2041-8213/ab911d
More Details

Authors: Réville Victor, Velli Marco, Rouillard Alexis P., Lavraud Benoit, Tenerani Anna, et al.
Title: Tearing Instability and Periodic Density Perturbations in the Slow Solar Wind
Abstract:

In contrast with the fast solar wind, which originates in coronal holes, the source of the slow solar wind is still debated. Often intermittent and enriched with low first ionization potential elements—akin to what is observed in closed coronal loops—the slow wind could form in bursty events nearby helmet streamers. Slow winds also exhibit density perturbations that have been shown to be periodic and could be associated with flux ropes ejected from the tip of helmet streamers, as shown recently by the WISPR white-light imager on board Parker Solar Probe (PSP). In this work, we propose that the main mechanism controlling the release of flux ropes is a flow-modified tearing mode at the heliospheric current sheet (HCS). We use magnetohydrodynamic simulations of the solar wind and coron. . .
Date: 05/2020 Publisher: The Astrophysical Journal Pages: L20 DOI: 10.3847/2041-8213/ab911d Available at: https://iopscience.iop.org/article/10.3847/2041-8213/ab911d
More Details