Found 5 results
Author Title Type [ Year(Asc)]
Filters: Author is Bowen, Trevor A.  [Clear All Filters]
Authors: McManus Michael D., Bowen Trevor A., Mallet Alfred, Chen Christopher H. K., Chandran Benjamin D. G., et al.
Title: Cross Helicity Reversals in Magnetic Switchbacks

We consider 2D joint distributions of normalized residual energy, σr(s, t), and cross helicity, σc(s, t), during one day of Parker Solar Probe's (PSP's) first encounter as a function of wavelet scale s. The broad features of the distributions are similar to previous observations made by Helios in slow solar wind, namely well-correlated and fairly Alfvénic wind, except for a population with negative cross helicity that is seen at shorter wavelet scales. We show that this population is due to the presence of magnetic switchbacks, or brief periods where the magnetic field polarity reverses. Such switchbacks have been observed before, both in Helios data and in Ulysses data in the polar solar wind. Their abundance and short timescales as seen by PSP in its first enc. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 67 DOI: 10.3847/1538-4365/ab6dce Available at:
More Details

Authors: Bowen Trevor A., Mallet Alfred, Huang Jia, Klein Kristopher G., Malaspina David M., et al.
Title: Ion-scale Electromagnetic Waves in the Inner Heliosphere

Understanding the physical processes in the solar wind and corona that actively contribute to heating, acceleration, and dissipation is a primary objective of NASA's Parker Solar Probe (PSP) mission. Observations of circularly polarized electromagnetic waves at ion scales suggest that cyclotron resonance and wave─particle interactions are dynamically relevant in the inner heliosphere. A wavelet-based statistical study of circularly polarized events in the first perihelion encounter of PSP demonstrates that transverse electromagnetic waves at ion resonant scales are observed in 30─50% of radial field intervals. Average wave amplitudes of approximately 4 nT are measured, while the mean duration of wave events is on the order of 20 s; however, long-duration wave events can exist withou. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 66 DOI: 10.3847/1538-4365/ab6c65 Available at:
More Details

Authors: Vech Daniel, Kasper Justin C., Klein Kristopher G., Huang Jia, Stevens Michael L., et al.
Title: Kinetic-scale Spectral Features of Cross Helicity and Residual Energy in the Inner Heliosphere

In this work, we present the first results from the flux angle (FA) operation mode of the Faraday Cup instrument on board the Parker Solar Probe (PSP). The FA mode allows rapid measurements of phase space density fluctuations close to the peak of the proton velocity distribution function with a cadence of 293 Hz. This approach provides an invaluable tool for understanding kinetic-scale turbulence in the solar wind and solar corona. We describe a technique to convert the phase space density fluctuations into vector velocity components and compute several turbulence parameters, such as spectral index, residual energy, and cross helicity during two intervals when the FA mode was used in PSP's first encounter at 0.174 au distance from the Sun.

Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 52 DOI: 10.3847/1538-4365/ab60a2 Available at:
More Details
Authors: Duan Die, Bowen Trevor A., Chen Christopher H. K., Mallet Alfred, He Jiansen, et al.
Title: The Radial Dependence of Proton-scale Magnetic Spectral Break in Slow Solar Wind during PSP Encounter 2

Magnetic field fluctuations in the solar wind are commonly observed to follow a power-law spectrum. Near proton-kinetic scales, a spectral break occurs that is commonly interpreted as a transition to kinetic turbulence. However, this transition is not yet entirely understood. By studying the scaling of the break with various plasma properties, it may be possible to constrain the processes leading to the onset of kinetic turbulence. Using data from the Parker Solar Probe, we measure the proton-scale break over a range of heliocentric distances, enabling a measurement of the transition from inertial to kinetic-scale turbulence under various plasma conditions. We find that the break frequency fb increases as the heliocentric distance r decreases in the slow solar wind following . . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 55 DOI: 10.3847/1538-4365/ab672d Available at:
More Details

Authors: de Wit Thierry Dudok, Krasnoselskikh Vladimir V., Bale Stuart D., Bonnell John W., Bowen Trevor A., et al.
Title: Switchbacks in the Near-Sun Magnetic Field: Long Memory and Impact on the Turbulence Cascade

One of the most striking observations made by Parker Solar Probe during its first solar encounter is the omnipresence of rapid polarity reversals in a magnetic field that is otherwise mostly radial. These so-called switchbacks strongly affect the dynamics of the magnetic field. We concentrate here on their macroscopic properties. First, we find that these structures are self-similar, and have neither a characteristic magnitude, nor a characteristic duration. Their waiting time statistics show evidence of aggregation. The associated long memory resides in their occurrence rate, and is not inherent to the background fluctuations. Interestingly, the spectral properties of inertial range turbulence differ inside and outside of switchback structures; in the latter the 1/f range extends to hi. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 39 DOI: 10.3847/1538-4365/ab5853 Available at:
More Details