Found 3 results
Author Title Type [ Year(Asc)]
Filters: Author is McComas, David J.  [Clear All Filters]
Authors: Nieves-Chinchilla Teresa, Szabo Adam, Korreck Kelly E., Alzate Nathalia, Balmaceda Laura A., et al.
Title: Analysis of the Internal Structure of the Streamer Blowout Observed by the Parker Solar Probe During the First Solar Encounter

In this paper, we present an analysis of the internal structure of a coronal mass ejection (CME) detected by in situ instruments on board the Parker Solar Probe (PSP) spacecraft during its first solar encounter. On 2018 November 11 at 23:53 UT, the FIELDS magnetometer measured an increase in strength of the magnetic field as well as a coherent change in the field direction. The SWEAP instrument simultaneously detected a low proton temperature and signatures of bidirectionality in the electron pitch angle distribution (PAD). These signatures are indicative of a CME embedded in the slow solar wind. Operating in conjunction with PSP was the STEREO A spacecraft, which enabled the remote observation of a streamer blowout by the SECCHI suite of instruments. The source at the Sun of the slow a. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 63 DOI: 10.3847/1538-4365/ab61f5 Available at:
More Details

Authors: Fox Nicola J., and McComas David J.
Title: Editorial: Topical Volume on Developing the Solar Probe Plus Mission

The Solar Probe Plus mission is a remarkable and historic step in the exploration of humankind. We have visited all of the planets and a number of other smaller moons and bodies; we have explored the magnetospheres, not just of Earth but also of all the planets; and we have explored our heliosphere and even flown a spacecraft beyond its boundary and into interstellar space itself. However, only with the launch of Solar Probe Plus will we actually visit our own star—the Sun—repeatedly traveling to within 9 solar radii (R S  RS ) of its surface (10R S  10RS heliocentric) and directly through its corona. From here, we will at long last be able to solve the key mysteries that have puzzled scientists for over 50 years: how the corona is heated and how the so. . .
Date: 12/2016 Publisher: Space Science Reviews Pages: 1 - 6 DOI: 10.1007/s11214-016-0323-7 Available at:
More Details

Authors: Kasper Justin C., Abiad Robert, Austin Gerry, Balat-Pichelin Marianne, Bale Stuart D., et al.
Title: Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus

The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic analyzer (ESA) on the ram side of SPP (SPAN-A) and an electron ESA on the anti-ram side (SPAN-B). The SPAN-A ion ESA has a time of flight section that enables it to sort particles by their mass/charge ratio, permitting differentiation of ion species. SPAN-A and -B are r. . .
Date: 10/2015 Publisher: Space Science Reviews DOI: 10.1007/s11214-015-0206-3 Available at:
More Details