Found 7 results
Author Title Type [ Year(Asc)]
Filters: Author is Moncuquet, M.  [Clear All Filters]
2020
Authors: Maksimovic M., Bale S. D., Berčič L., Bonnell J. W., Case A. W., et al.
Title: Anticorrelation between the Bulk Speed and the Electron Temperature in the Pristine Solar Wind: First Results from the Parker Solar Probe and Comparison with Helios
Abstract:

We discuss the solar wind electron temperatures Te as measured in the nascent solar wind by Parker Solar Probe during its first perihelion pass. The measurements have been obtained by fitting the high-frequency part of quasi-thermal noise spectra recorded by the Radio Frequency Spectrometer. In addition we compare these measurements with those obtained by the electrostatic analyzer discussed in Halekas et al. These first electron observations show an anticorrelation between Te and the wind bulk speed V: this anticorrelation is most likely the remnant of the well-known mapping observed at 1 au and beyond between the fast wind and its coronal hole sources, where electrons are observed to be cooler than in the quiet corona. We also revisit Helios electron temperature . . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 62 DOI: 10.3847/1538-4365/ab61fc Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab61fch
More Details

Authors: Chen C. H. K., Bale S. D., Bonnell J. W., Borovikov D., Bowen T. A., et al.
Title: The Evolution and Role of Solar Wind Turbulence in the Inner Heliosphere
Abstract:

The first two orbits of the Parker Solar Probe spacecraft have enabled the first in situ measurements of the solar wind down to a heliocentric distance of 0.17 au (or 36 R ⊙  R⊙ ). Here, we present an analysis of this data to study solar wind turbulence at 0.17 au and its evolution out to 1 au. While many features remain similar, key differences at 0.17 au include increased turbulence energy levels by more than an order of magnitude, a magnetic field spectral index of -3/2 matching that of the velocity and both Elsasser fields, a lower magnetic compressibility consistent with a smaller slow-mode kinetic energy fraction, and a much smaller outer scale that has had time for substantial nonlinear processing. There is also an overall increase in the dominance of . . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 53 DOI: 10.3847/1538-4365/ab60a3 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab60a3
More Details

Authors: Krasnoselskikh V., Larosa A., Agapitov O., de Wit Dudok, Moncuquet M., et al.
Title: Localized Magnetic-field Structures and Their Boundaries in the Near-Sun Solar Wind from Parker Solar Probe Measurements
Abstract:

One of the discoveries of the Parker Solar Probe during its first encounters with the Sun is ubiquitous presence of relatively small-scale structures standing out as sudden deflections of the magnetic field. They were named "switchbacks" since some of them show a full reversal of the radial component of the magnetic field and then return to "regular" conditions. We carried out an analysis of three typical switchback structures having different characteristics: I. Alfvénic structure, where the variations of the magnetic field components take place while conserving the magnitude of the magnetic field; II. Compressional structure, where the magnitude of the field varies together with changes of its components; and III. Structure manifesting full reversal of the magnetic field, presumably . . .
Date: 04/2020 Publisher: The Astrophysical Journal Pages: 93 DOI: 10.3847/1538-4357/ab7f2d Available at: https://iopscience.iop.org/article/10.3847/1538-4357/ab7f2d
More Details

2019
Authors: Bale S. D., Badman S. T., Bonnell J. W., Bowen T. A., Burgess D., et al.
Title: Highly structured slow solar wind emerging from an equatorial coronal hole
Abstract:

During the solar minimum, when the Sun is at its least active, the solar wind is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfvénic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain; theories and observations suggest that they may originate at the tips of helmet streamers, from interchange reconnection near coronal hole boundaries, or within coronal holes with highly diverging magnetic fields. The heating mechanism required to drive the solar wind is also unresolved, although candidate mechanisms include Alfvé;n-wave tur. . .
Date: 12/2019 Publisher: Nature Pages: 237 - 242 DOI: 10.1038/s41586-019-1818-7 Available at: http://www.nature.com/articles/s41586-019-1818-7
More Details

2017
Authors: Meyer-Vernet N., Issautier K., and Moncuquet M.
Title: Quasi-thermal noise spectroscopy: The art and the practice
Abstract:

Quasi-thermal noise spectroscopy is an efficient tool for measuring in situ macroscopic plasma properties in space, using a passive wave receiver at the ports of an electric antenna. This technique was pioneered on spinning spacecraft carrying very long dipole antennas in the interplanetary medium—like ISEE-3 and Ulysses—whose geometry approached a "theoretician’s dream." The technique has been extended to other instruments in various types of plasmas on board different spacecraft and will be implemented on several missions in the near future. Such extensions require different theoretical modelizations, involving magnetized, drifting, or dusty plasmas with various particle velocity distributions and antennas being shorter, biased, or made of unequal wires. We give new analytical a. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics Pages: 7925 - 7945 DOI: 10.1002/2017JA024449 Available at: http://doi.wiley.com/10.1002/2017JA024449http://onlinelibrary.wiley.com/wol1/doi/10.1002/2017JA024449/fullpdf
More Details

Authors: Pulupa M., Bale S. D., Bonnell J. W., Bowen T. A., Carruth N., et al.
Title: The solar probe plus radio frequency spectrometer: Measurement requirements, analog design, and digital signal processing
Abstract:

The Radio Frequency Spectrometer (RFS) is a two-channel digital receiver and spectrometer, which will make remote sensing observations of radio waves and in situ measurements of electrostatic and electromagnetic fluctuations in the solar wind. A part of the FIELDS suite for Solar Probe Plus (SPP), the RFS is optimized for measurements in the inner heliosphere, where solar radio bursts are more intense and the plasma frequency is higher compared to previous measurements at distances of 1 AU or greater. The inputs to the RFS receiver are the four electric antennas mounted near the front of the SPP spacecraft and a single axis of the SPP search coil magnetometer (SCM). Each RFS channel selects a monopole or dipole antenna input, or the SCM input, via multiplexers. The primary data products. . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023345 Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016JA023345
More Details

2016
Authors: Bale S. D., Goetz K., Harvey P. R., Turin P., Bonnell J. W., et al.
Title: The FIELDS Instrument Suite for Solar Probe Plus
Abstract:

NASA’s Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.


Date: 12/2016 Publisher: Space Science Reviews Pages: 49 - 82 DOI: 10.1007/s11214-016-0244-5 Available at: http://link.springer.com/10.1007/s11214-016-0244-5http://link.springer.com/content/pdf/10.1007/s11214-016-0244-5.pd
More Details