Found 2 results
Author Title Type [ Year(Asc)]
Filters: Author is Matthaeus, W. H.  [Clear All Filters]
Authors: Parashar T. N., Cuesta M., and Matthaeus W. H.
Title: Reynolds Number and Intermittency in the Expanding Solar Wind: Predictions Based on Voyager Observations

The large-scale features of the solar wind are examined in order to predict small-scale features of turbulence in unexplored regions of the heliosphere. The strategy is to examine how system size, or effective Reynolds number Re, varies, and then how this quantity influences observable statistical properties, including intermittency properties of solar wind turbulence. The expectation based on similar hydrodynamics scalings is that the kurtosis, of the small-scale magnetic field increments, will increase with increasing Re. Simple theoretical arguments as well as Voyager observations indicate that effective interplanetary turbulence Re decreases with increasing heliocentric distance. The decrease of scale-dependent magnetic increment kurtosis with increasing heliocentric distance is ver. . .
Date: 10/2019 Publisher: The Astrophysical Journal Pages: L57 DOI: 10.3847/2041-8213/ab4a82 Available at:
More Details

Authors: McComas D. J., Alexander N., Angold N., Bale S., Beebe C., et al.
Title: Integrated Science Investigation of the Sun (ISIS): Design of the Energetic Particle Investigation

The Integrated Science Investigation of the Sun (ISIS) is a complete science investigation on the Solar Probe Plus (SPP) mission, which flies to within nine solar radii of the Sun’s surface. ISIS comprises a two-instrument suite to measure energetic particles over a very broad energy range, as well as coordinated management, science operations, data processing, and scientific analysis. Together, ISIS observations allow us to explore the mechanisms of energetic particles dynamics, including their: (1) Origins—defining the seed populations and physical conditions necessary for energetic particle acceleration; (2) Acceleration—determining the roles of shocks, reconnection, waves, and turbulence in accelerating energetic particles; and (3) Transport—revealing how ener. . .
Date: 07/2014 Publisher: Space Science Reviews DOI: 10.1007/s11214-014-0059-1 Available at:
More Details