Found 23 results
Author Title Type [ Year(Asc)]
Filters: Author is Korreck, K. E.  [Clear All Filters]
2020
Authors: Maksimovic M., Bale S. D., Berčič L., Bonnell J. W., Case A. W., et al.
Title: Anticorrelation between the Bulk Speed and the Electron Temperature in the Pristine Solar Wind: First Results from the Parker Solar Probe and Comparison with Helios
Abstract:

We discuss the solar wind electron temperatures Te as measured in the nascent solar wind by Parker Solar Probe during its first perihelion pass. The measurements have been obtained by fitting the high-frequency part of quasi-thermal noise spectra recorded by the Radio Frequency Spectrometer. In addition we compare these measurements with those obtained by the electrostatic analyzer discussed in Halekas et al. These first electron observations show an anticorrelation between Te and the wind bulk speed V: this anticorrelation is most likely the remnant of the well-known mapping observed at 1 au and beyond between the fast wind and its coronal hole sources, where electrons are observed to be cooler than in the quiet corona. We also revisit Helios electron temperature . . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 62 DOI: 10.3847/1538-4365/ab61fc Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab61fch
More Details

Authors: Chhiber Rohit, Goldstein M L., Maruca B. A., Chasapis A., Matthaeus W. H., et al.
Title: Clustering of Intermittent Magnetic and Flow Structures near Parker Solar Probe ’s First Perihelion—A Partial-variance-of-increments Analysis
Abstract:

During the Parker Solar Probe’s (PSP) first perihelion pass, the spacecraft reached within a heliocentric distance of ̃37 R and observed numerous magnetic and flow structures characterized by sharp gradients. To better understand these intermittent structures in the young solar wind, an important property to examine is their degree of correlation in time and space. To this end, we use the well-tested partial variance of increments (PVI) technique to identify intermittent events in FIELDS and SWEAP observations of magnetic and proton-velocity fields (respectively) during PSP’s first solar encounter, when the spacecraft was within 0.25 au from the Sun. We then examine distributions of waiting times (WT) between events with varying separation and PVI thresholds. We find . . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 31 DOI: 10.3847/1538-4365/ab53d2 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab53d2
More Details

Authors: Halekas J. S., Whittlesey P., Larson D. E., McGinnis D., Maksimovic M., et al.
Title: Electrons in the Young Solar Wind: First Results from the Parker Solar Probe
Abstract:

The Solar Wind Electrons Alphas and Protons experiment on the Parker Solar Probe (PSP) mission measures the three-dimensional electron velocity distribution function. We derive the parameters of the core, halo, and strahl populations utilizing a combination of fitting to model distributions and numerical integration for ̃100,000 electron distributions measured near the Sun on the first two PSP orbits, which reached heliocentric distances as small as ̃0.17 au. As expected, the electron core density and temperature increase with decreasing heliocentric distance, while the ratio of electron thermal pressure to magnetic pressure (βe) decreases. These quantities have radial scaling consistent with previous observations farther from the Sun, with superposed variations associated. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 22 DOI: 10.3847/1538-4365/ab4cec Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab4cec
More Details

Authors: Cohen C. M. S., Christian E. R., Cummings A. C., Davis A. J., Desai M. I., et al.
Title: Energetic Particle Increases Associated with Stream Interaction Regions
Abstract:

The Parker Solar Probe was launched on 2018 August 12 and completed its second orbit on 2019 June 19 with perihelion of 35.7 solar radii. During this time, the Energetic Particle Instrument-Hi (EPI-Hi, one of the two energetic particle instruments comprising the Integrated Science Investigation of the Sun, IS☉IS) measured seven proton intensity increases associated with stream interaction regions (SIRs), two of which appear to be occurring in the same region corotating with the Sun. The events are relatively weak, with observed proton spectra extending to only a few MeV and lasting for a few days. The proton spectra are best characterized by power laws with indices ranging from -4.3 to -6.5, generally softer than events associated with SIRs observed at 1 au and beyond. Helium spectra . . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 20 DOI: 10.3847/1538-4365/ab4c38 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab4c38
More Details

Authors: Bandyopadhyay Riddhi, Goldstein M. L., Maruca B. A., Matthaeus W. H., Parashar T. N., et al.
Title: Enhanced Energy Transfer Rate in Solar Wind Turbulence Observed near the Sun from Parker Solar Probe
Abstract:

Direct evidence of an inertial-range turbulent energy cascade has been provided by spacecraft observations in heliospheric plasmas. In the solar wind, the average value of the derived heating rate near 1 au is \~10 3 Jkg -1 s -1  \~103Jkg-1s-1 , an amount sufficient to account for observed departures from adiabatic expansion. Parker Solar Probe, even during its first solar encounter, offers the first opportunity to compute, in a similar fashion, a fluid-scale energy decay rate, much closer to the solar corona than any prior in situ observations. Using the Politano-Pouquet third-order law and the von Kármán decay law, we estimate the fluid-range energy transfer rate in the inner heliosphere, at heliocentric distance R ranging from 54 R (. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 48 DOI: 10.3847/1538-4365/ab5dae Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab5dae
More Details

Authors: Chen C. H. K., Bale S. D., Bonnell J. W., Borovikov D., Bowen T. A., et al.
Title: The Evolution and Role of Solar Wind Turbulence in the Inner Heliosphere
Abstract:

The first two orbits of the Parker Solar Probe spacecraft have enabled the first in situ measurements of the solar wind down to a heliocentric distance of 0.17 au (or 36 R ⊙  R⊙ ). Here, we present an analysis of this data to study solar wind turbulence at 0.17 au and its evolution out to 1 au. While many features remain similar, key differences at 0.17 au include increased turbulence energy levels by more than an order of magnitude, a magnetic field spectral index of -3/2 matching that of the velocity and both Elsasser fields, a lower magnetic compressibility consistent with a smaller slow-mode kinetic energy fraction, and a much smaller outer scale that has had time for substantial nonlinear processing. There is also an overall increase in the dominance of . . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 53 DOI: 10.3847/1538-4365/ab60a3 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab60a3
More Details

Authors: Lavraud B., Fargette N., Réville V., Szabo A., Huang J., et al.
Title: The Heliospheric Current Sheet and Plasma Sheet during Parker Solar Probe’s First Orbit
Abstract:

We present heliospheric current sheet (HCS) and plasma sheet (HPS) observations during Parker Solar Probe’s (PSP) first orbit around the Sun. We focus on the eight intervals that display a true sector boundary (TSB; based on suprathermal electron pitch angle distributions) with one or several associated current sheets. The analysis shows that (1) the main density enhancements in the vicinity of the TSB and HCS are typically associated with electron strahl dropouts, implying magnetic disconnection from the Sun, (2) the density enhancements are just about twice that in the surrounding regions, suggesting mixing of plasmas from each side of the HCS, (3) the velocity changes at the main boundaries are either correlated or anticorrelated with magnetic field changes, consistent with magneti. . .
Date: 05/2020 Publisher: The Astrophysical Journal Pages: L19 DOI: 10.3847/2041-8213/ab8d2d Available at: https://iopscience.iop.org/article/10.3847/2041-8213/ab8d2d
More Details

Authors: Zhao L.-L., Zank G. P., Adhikari L., Hu Q., Kasper J. C., et al.
Title: Identification of Magnetic Flux Ropes from Parker Solar Probe Observations during the First Encounter
Abstract:

The Parker Solar Probe (PSP) observed an interplanetary coronal mass ejection (ICME) event during its first orbit around the Sun, among many other events. This event is analyzed by applying a wavelet analysis technique to obtain the reduced magnetic helicity, cross helicity, and residual energy, the first two of which are magnetohydrodynamics (MHD) invariants. Our results show that the ICME, as a large-scale magnetic flux rope, possesses high magnetic helicity, very low cross helicity, and highly negative residual energy, thus pointing to a magnetic fluctuation dominated structure. Using the same technique, we also search for small-scale coherent magnetic flux rope structures during the period from 2018 October 22 to November 21, which are intrinsic to quasi-two-dimensional MHD turbulen. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 26 DOI: 10.3847/1538-4365/ab4ff1 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab4ff1
More Details

Authors: Phan T. D., Bale S. D., Eastwood J. P., Lavraud B., Drake J. F., et al.
Title: Parker Solar Probe In Situ Observations of Magnetic Reconnection Exhausts during Encounter 1
Abstract:

Magnetic reconnection in current sheets converts magnetic energy into particle energy. The process may play an important role in the acceleration and heating of the solar wind close to the Sun. Observations from Parker Solar Probe (PSP) provide a new opportunity to study this problem, as it measures the solar wind at unprecedented close distances to the Sun. During the first orbit, PSP encountered a large number of current sheets in the solar wind through perihelion at 35.7 solar radii. We performed a comprehensive survey of these current sheets and found evidence for 21 reconnection exhausts. These exhausts were observed in heliospheric current sheets, coronal mass ejections, and regular solar wind. However, we find that the majority of current sheets encountered around perihelion, whe. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 34 DOI: 10.3847/1538-4365/ab55ee Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab55ee
More Details

Authors: Parashar T. N., Goldstein M. L., Maruca B. A., Matthaeus W. H., Ruffolo D., et al.
Title: Measures of Scale-dependent Alfvénicity in the First PSP Solar Encounter
Abstract:

The solar wind shows periods of highly Alfvénic activity, where velocity fluctuations and magnetic fluctuations are aligned or antialigned with each other. It is generally agreed that solar wind plasma velocity and magnetic field fluctuations observed by the Parker Solar Probe (PSP) during the first encounter are mostly highly Alfvénic. However, quantitative measures of Alfvénicity are needed to understand how the characterization of these fluctuations compares with standard measures from prior missions in the inner and outer heliosphere, in fast wind and slow wind, and at high and low latitudes. To investigate this issue, we employ several measures to quantify the extent of Alfvénicity—the Alfvén ratio rA, the normalized cross helicity σc, the normalized r. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 58 DOI: 10.3847/1538-4365/ab64e6 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab64e6
More Details

Authors: Bandyopadhyay Riddhi, Matthaeus W. H., Parashar T. N., Chhiber R., Ruffolo D., et al.
Title: Observations of Energetic-particle Population Enhancements along Intermittent Structures near the Sun from the Parker Solar Probe
Abstract:

Observations at 1 au have confirmed that enhancements in measured energetic-particle (EP) fluxes are statistically associated with "rough" magnetic fields, i.e., fields with atypically large spatial derivatives or increments, as measured by the Partial Variance of Increments (PVI) method. One way to interpret this observation is as an association of the EPs with trapping or channeling within magnetic flux tubes, possibly near their boundaries. However, it remains unclear whether this association is a transport or local effect; i.e., the particles might have been energized at a distant location, perhaps by shocks or reconnection, or they might experience local energization or re-acceleration. The Parker Solar Probe (PSP), even in its first two orbits, offers a unique opportunity to study. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 61 DOI: 10.3847/1538-4365/ab6220 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab6220
More Details

Authors: Qudsi R. A., Maruca B. A., Matthaeus W. H., Parashar T. N., Bandyopadhyay Riddhi, et al.
Title: Observations of Heating along Intermittent Structures in the Inner Heliosphere from PSP Data
Abstract:

The solar wind proton temperature at 1 au has been found to be correlated with small-scale intermittent magnetic structures, i.e., regions with enhanced temperature are associated with coherent structures, such as current sheets. Using Parker Solar Probe data from the first encounter, we study this association using measurements of the radial proton temperature, employing the partial variance of increments (PVI) technique to identify intermittent magnetic structures. We observe that the probability density functions of high PVI events have higher median temperatures than those with lower PVI. The regions in space where PVI peaks were also locations that had enhanced temperatures when compared with similar regions, suggesting a heating mechanism in the young solar wind that is associated. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 46 DOI: 10.3847/1538-4365/ab5c19 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab5c19
More Details

Authors: Leske R. A., Christian E. R., Cohen C. M. S., Cummings A. C., Davis A. J., et al.
Title: Observations of the 2019 April 4 Solar Energetic Particle Event at the Parker Solar Probe
Abstract:

A solar energetic particle event was detected by the Integrated Science Investigation of the Sun (IS☉IS) instrument suite on Parker Solar Probe (PSP) on 2019 April 4 when the spacecraft was inside of 0.17 au and less than 1 day before its second perihelion, providing an opportunity to study solar particle acceleration and transport unprecedentedly close to the source. The event was very small, with peak 1 MeV proton intensities of ̃0.3 particles (cm2 sr s MeV)-1, and was undetectable above background levels at energies above 10 MeV or in particle detectors at 1 au. It was strongly anisotropic, with intensities flowing outward from the Sun up to 30 times greater than those flowing inward persisting throughout the event. Temporal association between particle incre. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 35 DOI: 10.3847/1538-4365/ab5712 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab5712
More Details

Authors: Verniero J. L., Larson D. E., Livi R., Rahmati A., McManus M. D., et al.
Title: Parker Solar Probe Observations of Proton Beams Simultaneous with Ion-scale Waves
Abstract:

Parker Solar Probe (PSP), NASA’s latest and closest mission to the Sun, is on a journey to investigate fundamental enigmas of the inner heliosphere. This paper reports initial observations made by the Solar Probe Analyzer for Ions (SPAN-I), one of the instruments in the Solar Wind Electrons Alphas and Protons instrument suite. We address the presence of secondary proton beams in concert with ion-scale waves observed by FIELDS, the electromagnetic fields instrument suite. We show two events from PSP’s second orbit that demonstrate signatures consistent with wave-particle interactions. We showcase 3D velocity distribution functions (VDFs) measured by SPAN-I during times of strong wave power at ion scales. From an initial instability analysis, we infer that the VDFs departed far enough. . .
Date: 05/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 5 DOI: 10.3847/1538-4365/ab86af Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab86afhttps
More Details

Authors: Kim T. K., Pogorelov N. V., Arge C. N., Henney C. J., Jones-Mecholsky S. I., et al.
Title: Predicting the Solar Wind at the Parker Solar Probe Using an Empirically Driven MHD Model
Abstract:

Since its launch on 2018 August 12, Parker Solar Probe (PSP) has completed its first and second orbits around the Sun, having reached down to 35.7 solar radii at each perihelion. In anticipation of the exciting new data at such unprecedented distances, we have simulated the global 3D heliosphere using an MHD model coupled with a semi-empirical coronal model using the best available photospheric magnetograms as input. We compare our heliospheric MHD simulation results with in situ measurements along the PSP trajectory from its launch to the completion of the second orbit, with particular emphasis on the solar wind structure around the first two solar encounters. Furthermore, we show our model prediction for the third perihelion, which occurred on 2019 September 1. Comparison of the MHD r. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 40 DOI: 10.3847/1538-4365/ab58c9 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab58c9
More Details

Authors: Allen R. C., Lario D., Odstrcil D., Ho G. C., Jian L. K., et al.
Title: Solar Wind Streams and Stream Interaction Regions Observed by the Parker Solar Probe with Corresponding Observations at 1 au
Abstract:

Several fast solar wind streams and stream interaction regions (SIRs) were observed by the Parker Solar Probe (PSP) during its first orbit (2018 September-2019 January). During this time, several recurring SIRs were also seen at 1 au at both L1 (Advanced Composition Explorer (ACE) and Wind) and the location of the Solar Terrestrial Relations Observatory-Ahead (STEREO-A). In this paper, we compare four fast streams observed by PSP at different radial distances during its first orbit. For three of these fast stream events, measurements from L1 (ACE and Wind) and STEREO-A indicated that the fast streams were observed by both PSP and at least one of the 1 au monitors. Our associations are supported by simulations made by the ENLIL model driven by GONG-(ADAPT-)WSA, which allows us to context. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 36 DOI: 10.3847/1538-4365/ab578f Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab578f
More Details

Authors: Agapitov O. V., de Wit Dudok, Mozer F. S., Bonnell J. W., Drake J. F., et al.
Title: Sunward-propagating Whistler Waves Collocated with Localized Magnetic Field Holes in the Solar Wind: Parker Solar Probe Observations at 35.7 R Radii
Abstract:

Observations by the Parker Solar Probe mission of the solar wind at \~35.7 solar radii reveal the existence of whistler wave packets with frequencies below 0.1 fce (20-80 Hz in the spacecraft frame). These waves often coincide with local minima of the magnetic field magnitude or with sudden deflections of the magnetic field that are called switchbacks. Their sunward propagation leads to a significant Doppler frequency downshift from 200-300 to 20-80 Hz (from 0.2 to 0.5 fce). The polarization of these waves varies from quasi-parallel to significantly oblique with wave normal angles that are close to the resonance cone. Their peak amplitude can be as large as 2-4 nT. Such values represent approximately 10% of the background magnetic field, which is considerably more . . .
Date: 03/2020 Publisher: The Astrophysical Journal Pages: L20 DOI: 10.3847/2041-8213/ab799c Available at: https://iopscience.iop.org/article/10.3847/2041-8213/ab799c
More Details

Authors: Wiedenbeck M. E., Bučík R., Mason G. M., Ho G. C., Leske R. A., et al.
Title: 3 He-rich Solar Energetic Particle Observations at the Parker Solar Probe and near Earth
Abstract:

The Integrated Science Investigation of the Sun (IS☉IS) instrument suite on the Parker Solar Probe (PSP) spacecraft is making in situ observations of energetic ions and electrons closer to the Sun than any previous mission. Using data collected during its first two orbits, which reached perihelion distances of 0.17 au, we have searched for  3 He 3He -rich solar energetic particle (SEP) events under very quiet solar minimum conditions. On 2019-110-111 (April 20-21),  3 He 3He -rich SEPs were observed at energies near 1 MeV nucleon-1 in association with energetic protons, heavy ions, and electrons. This activity was also detected by the Ultra-Low-Energy Isotope Spectrometer and the Electron, Proton, and Alpha Monitor instruments on the Advanced C. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 42 DOI: 10.3847/1538-4365/ab5963 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab5963
More Details

Authors: Mozer F. S., Agapitov O. V., Bale S. D., Bonnell J. W., Case T., et al.
Title: Switchbacks in the Solar Magnetic Field: Their Evolution, Their Content, and Their Effects on the Plasma
Abstract:

Switchbacks (rotations of the magnetic field) are observed on the Parker Solar Probe. Their evolution, content, and plasma effects are studied in this paper. The solar wind does not receive a net acceleration from switchbacks that it encountered upstream of the observation point. The typical switchback rotation angle increased with radial distance. Significant Poynting fluxes existed inside, but not outside, switchbacks, and the dependence of the Poynting flux amplitude on the switchback radial location and rotation angle is explained quantitatively as being proportional to (B sin(θ))2. The solar wind flow inside switchbacks was faster than that outside due to the frozen-in ions moving with the magnetic structure at the Alfvén speed. This energy gain results from the diverg. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 68 DOI: 10.3847/1538-4365/ab7196 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab7196
More Details

Authors: Adhikari L., Zank G. P., Zhao L.-L., Kasper J. C., Korreck K. E., et al.
Title: Turbulence Transport Modeling and First Orbit Parker Solar Probe ( PSP ) Observations
Abstract:

The Parker Solar Probe (PSP) achieved its first orbit perihelion on 2018 November 6, reaching a heliocentric distance of about 0.165 au (35.55 R). Here, we study the evolution of fully developed turbulence associated with the slow solar wind along the PSP trajectory between 35.55 R and 131.64 R in the outbound direction, comparing observations to a theoretical turbulence transport model. Several turbulent quantities, such as the fluctuating kinetic energy and the corresponding correlation length, the variance of density fluctuations, and the solar wind proton temperature are determined from the PSP Solar Wind Electrons Alphas and Protons (SWEAP) plasma data along its trajectory between 35.55 R and 131.64 R. The evolut. . .
Date: 02/2020 Publisher: The Astrophysical Journal Supplement Series Pages: 38 DOI: 10.3847/1538-4365/ab5852 Available at: https://iopscience.iop.org/article/10.3847/1538-4365/ab5852
More Details

2019
Authors: Bale S. D., Badman S. T., Bonnell J. W., Bowen T. A., Burgess D., et al.
Title: Highly structured slow solar wind emerging from an equatorial coronal hole
Abstract:

During the solar minimum, when the Sun is at its least active, the solar wind is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfvénic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain; theories and observations suggest that they may originate at the tips of helmet streamers, from interchange reconnection near coronal hole boundaries, or within coronal holes with highly diverging magnetic fields. The heating mechanism required to drive the solar wind is also unresolved, although candidate mechanisms include Alfvé;n-wave tur. . .
Date: 12/2019 Publisher: Nature Pages: 237 - 242 DOI: 10.1038/s41586-019-1818-7 Available at: http://www.nature.com/articles/s41586-019-1818-7
More Details

Authors: McComas D. J., Christian E. R., Cohen C. M. S., Cummings A. C., Davis A. J., et al.
Title: Probing the energetic particle environment near the Sun
Abstract:

NASA’s Parker Solar Probe mission recently plunged through the inner heliosphere of the Sun to its perihelia, about 24 million kilometres from the Sun. Previous studies farther from the Sun (performed mostly at a distance of 1 astronomical unit) indicate that solar energetic particles are accelerated from a few kiloelectronvolts up to near-relativistic energies via at least two processes: "impulsive" events, which are usually associated with magnetic reconnection in solar flares and are typically enriched in electrons, helium-3 and heavier ions, and "gradual" events, which are typically associated with large coronal-mass-ejection-driven shocks and compressions moving through the corona and inner solar wind and are the dominant source of protons with energies between 1 and 10 megaelect. . .
Date: 12/2019 Publisher: Nature Pages: 223 - 227 DOI: 10.1038/s41586-019-1811-1 Available at: http://www.nature.com/articles/s41586-019-1811-1
More Details

2013
Authors: Case A. W., Kasper J. C., Daigneau P. S., Caldwell D., Freeman M., et al.
Title: AIP Conference ProceedingsDesigning a sun-pointing Faraday cup for solar probe plus
Abstract:

The NASA Solar Probe Plus (SPP) mission will be the first spacecraft to pass through the sub-Alfvénic solar corona. The objectives of the mission are to trace the flow of energy that heats and accelerates the solar corona and solar wind, to determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind, and to explore mechanisms that accelerate and transport energetic particles. The Solar Wind Electrons, Alphas, and Protons (SWEAP) Investigation instrument suite on SPP will measure the bulk solar wind conditions in the inner heliosphere. SWEAP consists of the Solar Probe Cup (SPC), a sun-pointing Faraday Cup, and the Solar Probe ANalyzers (SPAN), a set of 3 electrostatic analyzers that will reside in the penumbra of SPP’s thermal protection sy. . .
Date: Publisher: AIP DOI: 10.1063/1.4811083 Available at: http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4811083
More Details