Found 101 results
Author Title Type [ Year(Asc)]
2019
Authors: Wu Honghong, Verscharen Daniel, Wicks Robert T., Chen Christopher H. K., He Jiansen, et al.
Title: The Fluid-like and Kinetic Behavior of Kinetic Alfvén Turbulence in Space Plasma
Abstract:

Kinetic Alfvén waves (KAWs) are the short-wavelength extension of the magnetohydrodynamics Alfvén-wave branch in the case of highly oblique propagation with respect to the background magnetic field. Observations of space plasma show that small-scale turbulence is mainly KAW-like. We apply two theoretical approaches, a collisional two-fluid theory and a collisionless linear kinetic theory, to obtain predictions for the KAW polarizations depending on β p (the ratio of the proton thermal pressure to the magnetic pressure) at the ion gyroscale in terms of fluctuations in density, bulk velocity, and pressure. We perform a wavelet analysis of Magnetospheric Multiscale magnetosheath measurements and compare the observations with both the. . .
Date: 01/2019 Publisher: The Astrophysical Journal Pages: 106 DOI: 10.3847/1538-4357/aaef77 Available at: http://stacks.iop.org/0004-637X/870/i=2/a=106?key=crossref.82a2db48f1fad21f326ef5e3fb4b795
More Details

Authors: Le Fur I, De Wit R, Plus M, Oheix J, Derolez V, et al.
Title: Re-oligotrophication trajectories of macrophyte assemblages in Mediterranean coastal lagoons based on 17-year time-series
Abstract:

ABSTRACT: Since the mid-20th century, Mediterranean lagoons have been affected by eutrophication, leading to significant changes in primary producers. In the early 2000s, management actions have been implemented to reduce nutrient inputs with the aim to achieve a good ecological status as requested by the EU water framework directive. As a result of these actions, a sharp decline in nutrient loads has been recorded in several lagoons leading to an oligotrophication of the water column. The analyses of a long-term data set (1998-2015) of 21 polyhaline and euhaline lagoons with contrasting trophic status allowed us to infer a general scheme for the changes in macrophyte assemblages during the oligotrophication process. Placing hypertrophic and oligotrophic conditions end to end, we inferr. . .
Date: 01/2019 Publisher: Marine Ecology Progress Series Pages: 13 - 32 DOI: 10.3354/meps12814 Available at: https://www.int-res.com/abstracts/meps/v608/p13-32/https://www.int-res.com/articles/meps_oa/m608p013.pdf
More Details

2018
Authors: Witze Alexandra
Title: Death-defying NASA mission will make humanity’s closest approach to the Sun
Abstract:

The Parker Solar Probe will dive into the sizzling solar corona to explore its mysteries.


Date: 07/2018 Publisher: Nature Pages: 452 - 453 DOI: 10.1038/d41586-018-05741-6 Available at: http://www.nature.com/articles/d41586-018-05741-6http://www.nature.com/articles/d41586-018-05741-6.pdfhttp://www.nature.com/articles/d41586-018-05741-6http://www.nature.com/articles/d41586-018-05741-6.pdf
More Details
Authors: Stansby D, Horbury T S, and Matteini L
Title: Diagnosing solar wind origins using in situ measurements in the inner heliosphere
Abstract:

Robustly identifying the solar sources of individual packets of solar wind measured in interplanetary space remains an open problem. We set out to see if this problem is easier to tackle using solar wind measurements closer to the Sun than 1 au, where the mixing and dynamical interaction of different solar wind streams is reduced. Using measurements from the Helios mission, we examined how the proton core temperature anisotropy and cross-helicity varied with distance. At 0.3 au there are two clearly separated anisotropic and isotropic populations of solar wind that are not distinguishable at 1 au. The anisotropic population is always Alfvénic and spans a wide range of speeds. In contrast the isotropic population has slow speeds, and contains a mix of Alfvénic wind with constant mass f. . .
Date: 01/2019 Publisher: Monthly Notices of the Royal Astronomical Society Pages: 1706 - 1714 DOI: 10.1093/mnras/sty2814 Available at: https://academic.oup.com/mnras/article/482/2/1706/5142296http://academic.oup.com/mnras/article-pdf/482/2/1706/26330049/sty2814.pdf
More Details

Authors: Yoon Peter H., Hwang Junga, ópez Rodrigo A., Kim Sunjung, and Lee Jaejin
Title: Electromagnetic Thermal Noise in Upper-Hybrid Frequency Range
Abstract:

The inner magnetosphere including the radiation belt and ring current environment is replete with high-frequency fluctuations with peak intensity occurring near upper-hybrid frequency and/or multiple harmonic electron cyclotron frequencies above and below the upper-hybrid frequency. Past and contemporary spacecraft missions, including the Van Allen Probes, were designed to detect the electric field spectrum only for these high-frequency fluctuations. Making use of the recently formulated generalized theory of electromagnetic spontaneous emission in thermal magnetized plasmas, it is shown that upper-hybrid/multiple harmonic electron cyclotron emissions are characterized by a significant magnetic field component, even in the high-frequency regime. Such a prediction may potentially be test. . .
Date: 07/2018 Publisher: Journal of Geophysical Research: Space Physics Pages: 5356 - 5363 DOI: 10.1029/2018JA025459 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1029/2018JA025459/fullpdf
More Details

Authors: Stenborg Guillermo, Stauffer Johnathan R., and Howard Russell A.
Title: Evidence for a Circumsolar Dust Ring Near Mercury’s Orbit
Abstract:

To test a technique to be used on the white-light imager onboard the recently launched Parker Solar Probe mission, we performed a numerical differentiation of the brightness profiles along the photometric axis of the F-corona models that are derived from STEREO Ahead Sun Earth Connection Heliospheric Investigation observations recorded with the HI-1 instrument between 2007 December and 2014 March. We found a consistent pattern in the derivatives that can be observed from any S/C longitude between about 18° and 23° elongation with a maximum at about 21°. These findings indicate the presence of a circumsolar dust density enhancement that peaks at about 23° elongation. A straightforward integration of the excess signal in the derivative space indicates that the brightness increase over. . .
Date: 11/2018 Publisher: The Astrophysical Journal Pages: 74 DOI: 10.3847/1538-4357/aae6cb Available at: http://stacks.iop.org/0004-637X/868/i=1/a=74?key=crossref.819ea43bc5d8ac7ce2e4d9090800ae03
More Details

Authors: Owens Mathew J., Lockwood Mike, Barnard Luke A., and MacNeil Allan R.
Title: Generation of Inverted Heliospheric Magnetic Flux by Coronal Loop Opening and Slow Solar Wind Release
Abstract:

In situ spacecraft observations provide much-needed constraints on theories of solar wind formation and release, particularly the highly variable slow solar wind, which dominates near-Earth space. Previous studies have shown an association between local inversions in the heliospheric magnetic field (HMF) and solar wind released from the vicinity of magnetically closed coronal structures. We here show that in situ properties of inverted HMF are consistent with the same hot coronal source regions as the slow solar wind. We propose that inverted HMF is produced by solar wind speed shear, which results from interchange reconnection between a coronal loop and open flux tube, and introduces a pattern of fast─slow─fast wind along a given HMF flux tube. This same loop-opening process is tho. . .
Date: 11/2018 Publisher: The Astrophysical Journal Pages: L14 DOI: 10.3847/2041-8213/aaee82 Available at: http://stacks.iop.org/2041-8205/868/i=1/a=L14?key=crossref.317335516eaf9fd091c127050a2fecdd
More Details

Authors: Graham G. A., Rae I. J., Owen C. J., and Walsh A. P.
Title: Investigating the Effect of IMF Path Length on Pitch-angle Scattering of Strahl within 1 au
Abstract:

Strahl is the strongly field-aligned, beam-like population of electrons in the solar wind. Strahl width is observed to increase with distance from the Sun, and hence strahl electrons must be subject to in-transit scattering effects. Different energy relations have been both observed and modeled for both strahl width and the width increase with radial distance. Thus, there is much debate regarding what mechanism(s) scatter strahl. In this study, we use a novel method to investigate strahl evolution within 1 au by estimating the distance traveled by the strahl along the interplanetary magnetic field (IMF). We do this by implementing methods developed in previous studies, which make use of the onset of solar energetic particles at ̃1 au. Thus, we are able to obtain average strahl broadeni. . .
Date: 03/2018 Publisher: The Astrophysical Journal Pages: 40 DOI: 10.3847/1538-4357/aaaf1b Available at: http://stacks.iop.org/0004-637X/855/i=1/a=40?key=crossref.ef4d8c88b914db7976655ab16f8f792a
More Details

Authors: Bourdin Philippe, Singh Nishant K., and Brandenburg Axel
Title: Magnetic Helicity Reversal in the Corona at Small Plasma Beta
Abstract:

Solar and stellar dynamos shed small-scale and large-scale magnetic helicity of opposite signs. However, solar wind observations and simulations have shown that some distance above the dynamo both the small-scale and large-scale magnetic helicities have reversed signs. With realistic simulations of the solar corona above an active region now being available, we have access to the magnetic field and current density along coronal loops. We show that a sign reversal in the horizontal averages of the magnetic helicity occurs when the local maximum of the plasma beta drops below unity and the field becomes nearly fully force free. Hence, this reversal is expected to occur well within the solar corona and would not directly be accessible to in situ measurements with the Parker Solar Probe or . . .
Date: 12/2018 Publisher: The Astrophysical Journal Pages: 2 DOI: 10.3847/1538-4357/aae97a Available at: http://stacks.iop.org/0004-637X/869/i=1/a=2?key=crossref.90fa7f41d90e2c8b57f8248c0437cc6b
More Details

Authors: Hu Junxiang, Li Gang, Fu Shuai, Zank Gary, and Ao Xianzhi
Title: Modeling a Single SEP Event from Multiple Vantage Points Using the iPATH Model
Abstract:

Using the recently extended 2D improved Particle Acceleration and Transport in the Heliosphere (iPATH) model, we model an example gradual solar energetic particle event as observed at multiple locations. Protons and ions that are energized via the diffusive shock acceleration mechanism are followed at a 2D coronal mass ejection-driven shock where the shock geometry varies across the shock front. The subsequent transport of energetic particles, including cross-field diffusion, is modeled by a Monte Carlo code that is based on a stochastic differential equation method. Time intensity profiles and particle spectra at multiple locations and different radial distances, separated in longitudes, are presented. The results shown here are relevant to the upcoming Parker Solar Probe mission.

. . .
Date: 02/2018 Publisher: The Astrophysical Journal Pages: L19 DOI: 10.3847/2041-8213/aaabc1 Available at: http://stacks.iop.org/2041-8205/854/i=2/a=L19?key=crossref.3db06d37bee0fc065cdec82f4faaf3b7
More Details
Authors: Banks Michael
Title: NASA launches Parker Solar Probe mission to 'touch' the Sun
Abstract:

NASA has launched a mission to study the Sun’s atmosphere and solar wind that will come far closer to our star than any other craft before.


Date: 09/2018 Publisher: Physics World Pages: 7 - 7 DOI: 10.1088/2058-7058/31/9/11 Available at: http://stacks.iop.org/2058-7058/31/i=9/a=11?key=crossref.74cb5927650dbdc73ec7a9da93480898
More Details
Authors: Stansby David, Salem Chadi, Matteini Lorenzo, and Horbury Timothy
Title: A New Inner Heliosphere Proton Parameter Dataset from the Helios Mission
Abstract:

In the near future, Parker Solar Probe and Solar Orbiter will provide the first comprehensive in-situ measurements of the solar wind in the inner heliosphere since the Helios mission in the 1970s. We describe a reprocessing of the original Helios ion distribution functions to provide reliable and reproducible data to characterise the proton core population of the solar wind in the inner heliosphere. A systematic fitting of bi-Maxwellian distribution functions was performed to the raw Helios ion distribution function data to extract the proton core number density, velocity, and temperatures parallel and perpendicular to the magnetic field. We present radial trends of these derived proton parameters, forming a benchmark to which new measurements in the inner heliosphere will be compared. . . .
Date: 11/2018 Publisher: Solar Physics DOI: 10.1007/s11207-018-1377-3 Available at: http://link.springer.com/10.1007/s11207-018-1377-3http://link.springer.com/content/pdf/10.1007/s11207-018-1377-3.pdfhttp://link.springer.com/article/10.1007/s11207-018-1377-3/fulltext.htmlhttp://link.springer.com/content/pdf/10.1007/s11207-018-1377-3.pdf
More Details

Authors: Winslow Reka M., Schwadron Nathan A., Lugaz é, Guo Jingnan, Joyce Colin J., et al.
Title: Opening a Window on ICME-driven GCR Modulation in the Inner Solar System
Abstract:

Interplanetary coronal mass ejections (ICMEs) often cause Forbush decreases (Fds) in the flux of galactic cosmic rays (GCRs). We investigate how a single ICME, launched from the Sun on 2014 February 12, affected GCR fluxes at Mercury, Earth, and Mars. We use GCR observations from MESSENGER at Mercury, ACE/LRO at the Earth/Moon, and MSL at Mars. We find that Fds are steeper and deeper closer to the Sun, and that the magnitude of the magnetic field in the ICME magnetic ejecta as well as the “strength” of the ICME sheath both play a large role in modulating the depth of the Fd. Based on our results, we hypothesize that (1) the Fd size decreases exponentially with heliocentric distance, and (2) that two-step Fds are more common closer to the Sun. Both hypotheses will be directly verifia. . .
Date: 04/2018 Publisher: The Astrophysical Journal Pages: 139 DOI: 10.3847/1538-4357/aab098 Available at: http://stacks.iop.org/0004-637X/856/i=2/a=139?key=crossref.287f3cbc519cdfae455bd8b9d0a9351a
More Details

Authors: éville Victor, Tenerani Anna, and Velli Marco
Title: Parametric Decay and the Origin of the Low-frequency Alfvénic Spectrum of the Solar Wind
Abstract:

The fast solar wind shows a wide spectrum of transverse magnetic and velocity field perturbations. These perturbations are strongly correlated in the sense of Alfvén waves propagating mostly outward, from the Sun to the interplanetary medium. They are likely to be fundamental to the acceleration and the heating of the solar wind. However, the precise origin of the broadband spectrum is unknown to date. Typical periods of chromospheric Alfvén waves are limited to a few minutes, and any longer period perturbations should be strongly reflected at the transition region. In this work, we show that minute long Alfvénic fluctuations are unstable to the parametric instability. Parametric instability enables an inverse energy cascade by exciting several-hour-long periods of Alfvénic fluctuat. . .
Date: 10/2018 Publisher: The Astrophysical Journal Pages: 38 DOI: 10.3847/1538-4357/aadb8f Available at: http://stacks.iop.org/0004-637X/866/i=1/a=38?key=crossref.877507b60fca8d8ddb73692a546936b0
More Details

Authors: Chandran Benjamin D. G.
Title: Parametric instability, inverse cascade and the  range of solar-wind turbulence
Abstract:

In this paper, weak-turbulence theory is used to investigate the nonlinear evolution of the parametric instability in three-dimensional low-β plasmas at wavelengths much greater than the ion inertial length under the assumption that slow magnetosonic waves are strongly damped. It is shown analytically that the parametric instability leads to an inverse cascade of Alfvén wave quanta, and several exact solutions to the wave kinetic equations are presented. The main results of the paper concern the parametric decay of Alfvén waves that initially satisfy e+ ≫ e-, where e+ and e- are the frequency (f) spectra of Alfvén waves propagating in opposite directions along the magnetic field lines. If e+ initially has a peak frequency fDate: 02/2018 Publisher: Journal of Plasma Physics DOI: 10.1017/S0022377818000016 Available at: https://www.cambridge.org/core/product/identifier/S0022377818000016/type/journal_article
More Details

Authors: Xiong Ming, Davies Jackie A., Feng Xueshang, Li Bo, Yang Liping, et al.
Title: Prospective White-light Imaging and In Situ Measurements of Quiescent Large-scale Solar-wind Streams from the Parker Solar Probe and Solar Orbiter
Abstract:

Deep-space exploration of the inner heliosphere is in an unprecedented golden age, with the recent and forthcoming launches of the Parker Solar Probe (PSP) and Solar Orbiter (SolO) missions, respectively. In order to both predict and understand the prospective observations by PSP and SolO, we perform forward MHD modeling of the 3D inner heliosphere at solar minimum, and synthesize the white-light (WL) emission that would result from Thomson scattering of sunlight from the coronal and heliospheric plasmas. Both solar rotation and spacecraft trajectory should be considered when reconstructing quiescent large-scale solar-wind streams from PSP and SolO WL observations. When transformed from a static coordinate system into a corotating one, the elliptical orbit of PSP becomes a multiwinding . . .
Date: 12/2018 Publisher: The Astrophysical Journal Pages: 137 DOI: 10.3847/1538-4357/aae978 Available at: http://stacks.iop.org/0004-637X/868/i=2/a=137?key=crossref.fe473eb9a278d1ea105f9203808e2eab
More Details

Authors: Perrone Denise, Stansby D, Horbury T, and Matteini L
Title: Radial evolution of the solar wind in pure high-speed streams: HELIOS revised observations
Abstract:

Spacecraft observations have shown that the proton temperature in the solar wind falls off with radial distance more slowly than expected for an adiabatic prediction. Usually, previous studies have been focused on the evolution of the solar-wind plasma by using the bulk speed as an order parameter to discriminate different regimes. In contrast, here, we study the radial evolution of pure and homogeneous fast streams (i.e. well-defined streams of coronal-hole plasma that maintain their identity during several solar rotations) by means of re-processed particle data, from the HELIOS satellites between 0.3 and 1 au. We have identified 16 intervals of unperturbed high-speed coronal-hole plasma, from three different sources and measured at different radial distances. The observations show tha. . .
Date: 10/2018 Publisher: Monthly Notices of the Royal Astronomical Society DOI: 10.1093/mnras/sty3348 Available at: https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/sty3348/5237719http://academic.oup.com/mnras/advance-article-pdf/doi/10.1093/mnras/sty3348/27082965/sty3348.pdf
More Details

Authors: Tsurutani Bruce T., Lakhina Gurbax S., Sen Abhijit, Hellinger Petr, Glassmeier Karl-Heinz, et al.
Title: A Review of Alfvénic Turbulence in High-Speed Solar Wind Streams: Hints From Cometary Plasma Turbulence
Abstract:

Solar wind turbulence within high-speed streams is reviewed from the point of view of embedded single nonlinear Alfvén wave cycles, discontinuities, magnetic decreases (MDs), and shocks. For comparison and guidance, cometary plasma turbulence is also briefly reviewed. It is demonstrated that cometary nonlinear magnetosonic waves phase-steepen, with a right-hand circular polarized foreshortened front and an elongated, compressive trailing edge. The former part is a form of "wave breaking" and the latter that of "period doubling." Interplanetary nonlinear Alfvén waves, which are arc polarized, have a 180° foreshortened front and with an elongated trailing edge. Alfvén waves have polarizations different from those of cometary magnetosonic waves, indicating that helicity is a durable fe. . .
Date: Jan-04-2018 Publisher: Journal of Geophysical Research: Space Physics Pages: 2458 - 2492 DOI: 10.1002/jgra.v123.410.1002/2017JA024203 Available at: http://doi.wiley.com/10.1002/jgra.v123.4http://doi.wiley.com/10.1002/2017JA024203https://onlinelibrary.wiley.com/doi/full/10.1002/2017JA024203https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2017JA024203
More Details

Authors: Horbury T S, Matteini L, and Stansby D
Title: Short, large-amplitude speed enhancements in the near-Sunfast solar wind
Abstract:

We report the presence of intermittent, short discrete enhancements in plasma speed in the near-Sun high-speed solar wind. Lasting tens of seconds to minutes in spacecraft measurements at 0.3 au, speeds inside these enhancements can reach 1000 km s-1, corresponding to a kinetic energy up to twice that of the bulk high-speed solar wind. These events, which occur around 5 per cent of the time, are Alfvénic in nature with large magnetic field deflections and are the same temperature as the surrounding plasma, in contrast to the bulk fast wind which has a well-established positive speed-temperature correlation. The origin of these speed enhancements is unclear but they may be signatures of discrete jets associated with transient events in the chromosphere or corona. Such large s. . .
Date: 08/2018 Publisher: Monthly Notices of the Royal Astronomical Society Pages: 1980 - 1986 DOI: 10.1093/mnras/sty953 Available at: https://academic.oup.com/mnras/article/478/2/1980/4987231
More Details

Authors: Roberts Merrill A, Uritsky Vadim M, DeVore Richard, and Karpen Judith T
Title: Simulated Encounters of the Parker Solar Probe with a Coronal-hole Jet
Abstract:

Solar coronal jets are small, transient, collimated ejections most easily observed in coronal holes (CHs). The upcoming Parker Solar Probe (PSP) mission provides the first opportunity to encounter CH jets in situ near the Sun and examine their internal structure and dynamics. Using projected mission orbital parameters, we have simulated PSP encounters with a fully three-dimensional magnetohydrodynamic (MHD) model of a CH jet. We find that three internal jet regions, featuring different wave modes and levels of compressibility, have distinct identifying signatures detectable by PSP. The leading Alfvén wave front and its immediate wake are characterized by trans-Alfvénic plasma flows with mild density enhancements. This front exhibits characteristics of a fast switch-on MHD shock, whose. . .
Date: 10/2018 Publisher: The Astrophysical Journal Pages: 14 DOI: 10.3847/1538-4357/aadb41 Available at: http://stacks.iop.org/0004-637X/866/i=1/a=14?key=crossref.839142d08cc9d207f0bd8fb8e2b59c4a
More Details

Authors: Amicis Raffaella ’, Matteini Lorenzo, and Bruno Roberto
Title: On slow solar wind with high Alfvénicity: from composition and microphysics to spectral properties
Abstract:

Alfvénic fluctuations are very common features in the solar wind and are found especially within the main portion of fast-wind streams while the slow wind usually is less Alfvénic and more variable. In general, the fast and slow winds show many differences, which span from the large-scale structure to small-scale phenomena, including also a different turbulent behaviour. Recent studies, however, have shown that even the slow wind can sometimes be highly Alfvénic, with fluctuations as large as those of the fast wind. This study is devoted to presenting many facets of this Alfvénic slow solar wind, including for example the study of the source regions and their connection to coronal structures, large-scale properties, and microscale phenomena and also impact on the spectral features. . . .
Date: 3/2019 Publisher: Monthly Notices of the Royal Astronomical Society DOI: 10.1093/mnras/sty3329 Available at: https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/sty3329/5245187http://academic.oup.com/mnras/advance-article-pdf/doi/10.1093/mnras/sty3329/27125375/sty3329.pdf
More Details

Authors: Raza Nayyer, Van Waerbeke Ludovic, and Zhitnitsky Ariel
Title: Solar corona heating by axion quark nugget dark matter
Abstract:

In this work we advocate for the idea that two seemingly unrelated 80-year-old mysteries—the nature of dark matter and the high temperature of the million degree solar corona—may have resolutions that lie within the same physical framework. The current paradigm is that the corona is heated by nanoflares, which were originally proposed as miniature versions of the observed solar flares. It was recently suggested that the nanoflares could be identified as annihilation events of the nuggets from the axion quark nugget (AQN) dark matter model. This model was invented as an explanation of the observed ratio Ωdark̃Ωvisible, based only on cosmological and particle physics considerations. In this new paradigm, the AQN particles moving through the coronal plasma and . . .
Date: 11/2018 Publisher: Physical Review D DOI: 10.1103/PhysRevD.98.103527 Available at: http://harvest.aps.org/v2/journals/articles/10.1103/PhysRevD.98.103527/fulltext
More Details

Authors: Venzmer M. S., and Bothmer V.
Title: Solar-wind predictions for the Parker Solar Probeorbit
Abstract:

Context. The Parker Solar Probe (PSP; formerly Solar Probe Plus) mission will be humanitys first in situ exploration of the solar corona with closest perihelia at 9.86 solar radii (R) distance to the Sun. It will help answer hitherto unresolved questions on the heating of the solar corona and the source and acceleration of the solar wind and solar energetic particles. The scope of this study is to model the solar-wind environment for PSPs unprecedented distances in its prime mission phase during the years 2018 to 2025. The study is performed within the Coronagraphic German And US SolarProbePlus Survey (CGAUSS) which is the German contribution to the PSP mission as part of the Wide-field Imager for Solar PRobe. Aim. We present an empirical solar-wind model for the inner hel. . .
Date: 03/2018 Publisher: Astronomy & Astrophysics Pages: A36 DOI: 10.1051/0004-6361/201731831 Available at: https://www.aanda.org/10.1051/0004-6361/201731831https://www.aanda.org/10.1051/0004-6361/201731831/pdf
More Details

Authors: Reid Hamish A. S., and Kontar Eduard P.
Title: Spatial Expansion and Speeds of Type III Electron Beam Sources in the Solar Corona
Abstract:

A component of space weather, electron beams are routinely accelerated in the solar atmosphere and propagate through interplanetary space. Electron beams interact with Langmuir waves resulting in type III radio bursts. They expand along the trajectory and, using kinetic simulations, we explore the expansion as the electrons propagate away from the Sun. Specifically, we investigate the front, peak, and back of the electron beam in space from derived radio brightness temperatures of fundamental type III emission. The front of the electron beam travels at speeds from 0.2c to 0.7c, significantly faster than the back of the beam, which travels at speeds between 0.12c and 0.35c. The difference in speed between the front and the back elongates the electron beam in time. The rate of beam elonga. . .
Date: 11/2018 Publisher: The Astrophysical Journal Pages: 158 DOI: 10.3847/1538-4357/aae5d4 Available at: http://stacks.iop.org/0004-637X/867/i=2/a=158?key=crossref.0069d201e36ac912893a93028da80455
More Details

Authors: Jeffrey Natasha L. S., Hahn Michael, Savin Daniel W., and Fletcher Lyndsay
Title: Spectroscopic Measurements of the Ion Velocity Distribution at the Base of the Fast Solar Wind
Abstract:

In situ measurements of the fast solar wind reveal non-thermal distributions of electrons, protons, and minor ions extending from 0.3 au to the heliopause. The physical mechanisms responsible for these non-thermal properties and the location where these properties originate remain open questions. Here, we present spectroscopic evidence, from extreme ultraviolet spectroscopy, that the velocity distribution functions (VDFs) of minor ions are already non-Gaussian at the base of the fast solar wind in a coronal hole, at altitudes of <1.1 R . Analysis of Fe, Si, and Mg spectral lines reveals a peaked line-shape core and broad wings that can be characterized by a kappa VDF. A kappa distribution fit gives very small kappa indices off-limb of κ ≈ 1.9-2.5, indicating either (. . .
Date: 03/2018 Publisher: The Astrophysical Journal Pages: L13 DOI: 10.3847/2041-8213/aab08c Available at: http://stacks.iop.org/2041-8205/855/i=1/a=L13?key=crossref.c49731858480faecf31502cc56e0b5f3
More Details

Pages