Simulating White Light Images of Coronal Structures for WISPR/Parker Solar Probe: Effects of the Near-Sun Elliptical Orbit

Author
Keywords
Abstract
The three-to-five-month elliptical orbit of Parker Solar Probe (PSP), approaching within 10 solar radii of the Sun, will allow the Wide-field Imager for Solar Probe (WISPR) to view the corona with unprecedented spatial resolution from multiple viewpoints. WISPR has a wide fixed angular field of view, extending from 13.5 degrees to 108 degrees from the Sun and approximately 50 degrees in the transverse direction, but the physical extent of the imaged coronal region varies directly with the distance of the spacecraft from the Sun. In a solar encounter period of approximately 10 days around perihelion, PSP covers over 100-200 degrees of heliographic longitude and the distance from the Sun varies by a factor of two to five. In this paper, we use synthetic white-light images to study the effects of the rapid elliptical orbit on the images that can be anticipated for WISPR s observations. We find that sequences of images can help identify coronal density features that will be sampled by in-situ instruments. We also find that the multiple viewpoints, provided by the rapid motion near perihelion, can be used to obtain three-dimensional information on the coronal density features.
Year of Publication
2019
Journal
SOLAR PHYSICS
Volume
294
Number
Number of Pages
93
Date Published
07/2019
ISSN Number
0038-0938
DOI
10.1007/s11207-019-1489-4