Predicting the Solar Wind at the <i>Parker Solar Probe</i> Using an Empirically Driven MHD Model

Author
Keywords
Abstract
<p>Since its launch on 2018 August 12, Parker Solar Probe (PSP) has completed its first and second orbits around the Sun, having reached down to 35.7 solar radii at each perihelion. In anticipation of the exciting new data at such unprecedented distances, we have simulated the global 3D heliosphere using an MHD model coupled with a semi-empirical coronal model using the best available photospheric magnetograms as input. We compare our heliospheric MHD simulation results with in situ measurements along the PSP trajectory from its launch to the completion of the second orbit, with particular emphasis on the solar wind structure around the first two solar encounters. Furthermore, we show our model prediction for the third perihelion, which occurred on 2019 September 1. Comparison of the MHD results with PSP observations provides new insights into solar wind acceleration. Moreover, PSP observations reveal how accurately the Air Force Data Assimilative Photospheric flux Transport-Wang-Sheeley-Arge-based predictions work throughout the inner heliosphere.</p>
Year of Publication
2020
Journal
The Astrophysical Journal Supplement Series
Volume
246
Number
Number of Pages
40
Date Published
02/2020
URL
https://iopscience.iop.org/article/10.3847/1538-4365/ab58c9
DOI
10.3847/1538-4365/ab58c9